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Supervisor’s Foreword

One ultimate aim for any simulation or modelling method must be to provide
accurate and reliable predictions of the behaviour of the system that is being
simulated. Once this goal is achieved it gives a researcher the option of either
performing an experiment to determine a quantity of interest or carrying out a
simulation instead. Furthermore, simulation has the enviable advantage of its cost
falling by a factor of two every 18 months due to Moore’s Law driving down the
cost of computation. Thus one may enter an era of rapid technological progress
driven by simulation. The rapid developments in car safety following the devel-
opment of ‘virtual’ car crash test simulations are a perfect example of this effect. In
a similar vein, density functional theory has transformed the physical sciences by
allowing any researcher to perform parameter-free quantum mechanical calcula-
tions to predict a vast number of physical and chemical properties of materials. In
principle, similar methods could be applied to biological problems. However, even
the simplest biological systems contain many thousands of atoms and they have
extremely complex configuration spaces associated with this vast number of
degrees of freedom. The process of fabricating a material is also extremely complex
and currently beyond the capability of simulation. Thus, in the physical sciences we
are in the uncomfortable situation of being able to predict new materials which have
desirable properties but not being able to use simulation to design methods to
fabricate them.

One approach that allows quantum-mechanical simulations to be applied to
biological systems are the so-called QM/MM methods, for which the 2013 Nobel
Prize in Chemistry was awarded to Karplus, Levitt and Warshel. In these methods,
a small part of the system, generally containing far fewer than a hundred atoms, is
modelled using quantum-mechanical methods while the remainder of the system is
modelled using less expensive empirical molecular modelling methods. There are
technical issues associated with the boundary between the two regions which raises
questions about the ultimate accuracy and applicability of these methods. More
recently, linear-scaling density-functional codes have been developed which can be
applied to systems containing many thousands of atoms. This makes entire
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biological molecules accessible to quantum-mechanical calculation which provides
a way of assessing the accuracy of QM/MM methods.

Previous work suggested that density functional theory calculations on large
biological molecules would fail because of an unphysical closing of the energy gap
between the occupied and unoccupied elements. This thesis demonstrates that this
behaviour is caused by an artefact in the choice of the model used for the calcu-
lations and a number of practical methods which avoid this unphysical behaviour
are presented.

The most significant contribution of this thesis is a landmark quantum
mechanical calculation of the activation barrier for a biological reaction, namely the
Claisen rearrangement of chorismate to prephenate. This reaction is catalysed by
the enzyme chorismate mutase and is part of the metabolic pathway that generates
the aromatic amino acids phenylalanine, tyrosine and tryptophan. This system has
been studied previously using QM/MM methods, though these previous studies
gave significantly different values for the activation barrier. The quantum
mechanical calculations on systems containing up to 2,000 atoms presented here
suggest that the atomic geometries determined from QM/MM simulations are quite
accurate. However, the calculations also show that there are significant long-range
contributions to the activation energy that are not accounted for in the QM/MM
calculations. This raises significant questions about the predictive capability of
QM/MM calculations.

Although it will be some time before predictive quantum mechanical calcula-
tions are used routinely in biology, this thesis represents a significant step along the
path to this ultimate goal.

Cambridge, UK Prof. Mike Payne
February 2015
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Abstract

There exists a concerted and continual effort to simulate systems of genuine bio-
logical interest to greater accuracy with methods of increasing transferability. More
accurate descriptions of these systems at a truly atomistic and electronic level are
irrevocably changing our understanding of biochemical processes. Broadly, clas-
sical techniques do not employ enough rigour, while conventional quantum
mechanical approaches are too computationally expensive for systems of the req-
uisite size. Linear-scaling density-functional theory (DFT) is an accurate method
that can apply the predictive power of quantum mechanics to the system sizes
required to study problems in enzymology. This dissertation presents methodo-
logical developments and protocols, including the best practice, for accurate
preparation and optimisation, combined with proof-of-principle calculations dem-
onstrating reliable results for a range of small molecule and large biomolecular
systems. Previous authors have shown that DFT calculations yield an unphysical,
negligible energy gap between the highest occupied and lowest unoccupied
molecular orbitals for proteins and large water clusters, a characteristic reproduced
in this dissertation. However, whilst others use this phenomenon to question the
applicability of Kohn-Sham DFT to large systems, it is shown within this disser-
tation that the vanishing gap is, in fact, an electrostatic artefact of the method used
to prepare the system. Furthermore, practical solutions are demonstrated for
ensuring a physical gap is maintained upon increasing system size. Harnessing
these advances, the first application using linear-scaling DFT to optimise stationary
points in the reaction pathway for the Bacillus subtilis chorismate mutase (CM)
enzyme is made. Averaged energies of activation and reaction are presented for the
rearrangement of chorismate to prephenate in CM and in water, for system sizes
comprising up to 2000 atoms. Compared to the uncatalysed reaction, the calculated
activation barrier is lowered by 10.5 kcal mol−1 in the presence of CM, in good
agreement with experiment. In addition, a detailed analysis of the interactions
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between individual active-site residues and the bound substrate is performed,
predicting the significance of individual enzyme sidechains in CM catalysis. These
proof-of-principle applications of powerful large-scale DFT methods to enzyme
catalysis will provide new insight into enzymatic principles from an atomistic and
electronic perspective.
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Chapter 1
Introduction

The good news about computers is that they do what you tell
them to do. The bad news is that they do what you tell them to do.

—Ted Nelson

The very essence of science stands upon a foundation of observation. Experiments
are devised, carried out, and interpreted, in an attempt to produce results concerning
the nature of the world around us, adding to the existing body of knowledge. Theories
are put in place in order to explain these results and aim to make further predictions
to be tested through additional experiments, or perhaps to shine light on conflicting
results. Whilst this is quite a simplistic view of the day-to-day undertakings of a
scientist, the essential business of science remains true to reality. The theoretical
and computational ideas harnessed in this dissertation have their roots in the seminal
works of many distinguished scientists. Between 1918 and 1933, five Nobel prizes
for Physics were awarded to the predominant developers of the theory of quantum
mechanics (QM). These laureates were Max Planck, Niels Bohr, Louis de Broglie,
Werner Heisenberg, Erwin Schrödinger and Paul Dirac, in chronological order. In
addition, Albert Einstein’s significant contributions cannot go unmentioned. These
theoretical insights laid the foundations for the quantum chemical approach that won
Walter Kohn and John Pople the prize for Chemistry in 1998. Considering earlier
works, Johannes Diderik van der Waals and his eponymous interactions (awarded
the prize for Physics in 1910), along with Charles-Augustin de Coulomb’s influential
contributions, inspired the development of models to describe interaction potentials
based on approaches from classical physics. The classical models most widely used
today have their origins in the work by the research groups of Westheimer [1], Hill
[2] and Ingold [3], who in 1946 independently suggested how such approaches could
be applied to molecules. It was Norman Allinger in 1965 who developed one of the
first computer codes to optimise molecular structures in an empirical and classical
framework [4]. Building upon Berni Alder and Thomas Wainwright’s 1957 work
on hard sphere molecular dynamics [5], not to mention Nicholas Metropolis’ work
on Markov chain Monte Carlo simulations predating it [6], Allinger’s were the first
real sets of methods that we would now recognise as molecular mechanics (MM).
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2 1 Introduction

At the same time, QM methods were being used in order to construct MM poten-
tials. One of the first of such developments was Shneior Lifson and Arieh Warshel’s
consistent force field method [7] which Lifson used in collaboration with Michael
Levitt to minimise the energy of a protein system [8]. Using a classical potential
with terms constructed from underlying QM calculations is the basis of most of
today’s force fields. The problem was then how to accurately predict the structural
coordinates of large systems. One of the greatest successes of attempting to meet
this challenge stemmed from the initial work of Alder and Wainwright to develop a
method of molecular dynamics (MD) to accurately predict the ionic configurations
of a system. The use of classical potentials allows large systems and the associated
time scales to be treated. However, the breaking and forming of chemical bonds can
not be accurately treated in MM or MD. These processes can be described using
conventional QM methods but, due to the computational costs, as will be discussed
later in this dissertation, the system sizes accessible with these approaches do not
reach the requirements for studying biomolecular systems. A particularly successful
brand of QM-based approaches is density-functional theory (DFT). DFT calcula-
tions were initially employed mainly for the study of the electronic structure of
simple solids, using a few atoms in a unit cell, with the use of periodic boundary
conditions. However, following a huge effort to improve the accuracy and efficiency
of the calculation techniques by Car and Parrinello [9], the size of the target sys-
tems increased dramatically, but they were still not large enough to approach entire
proteins. Density-functional approaches with a significantly reduced computational
cost were first developed in 1991 by Yang [10] and have been developing ever since
[11, 12]. However, large systems have many more degrees of freedom to explore
and so require a greater computational effort in order to locate minimum energy
structures. This requires the level of conformational sampling that is simply not
feasible with QM-based calculations alone, so classical approaches are required. A
significant step forward, that ties these two approaches together, is that of combined
quantum mechanics/molecular mechanics (QM/MM) [13]. It was the development
of these “Multiscale Models for Complex Chemical Systems” that resulted inMartin
Karplus, Michael Levitt and Arieh Warshel being awarded the 2013 Nobel prize for
Chemistry. It is a strategy combiningMM, QM/MM and full-QM that is presented in
this dissertation. I therefore feel compelled to reproduce the oft-quoted line written
by Sir Isaac Newton in a letter to Robert Hooke in 1676:

If I have seen further it is by standing on the shoulders of giants

and I feel this is an ever-present theme, not only in this dissertation but also in the
natural sciences in general. I strongly believe this is something that practitioners in
all fields should be aware of and generate a firm appreciation for.
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1.1 Modelling and Simulation: In Silico Techniques

A natural question might be asked as to where exactly computational simulations
fit into the grand scheme of science. Simulations act to bridge pure theory, which is
only able to give exact solutions to simpler, well-defined problems, and experiment,
with all its inherent complexity. It has been remarked by multiple authors in the
literature and in various academic meetings that developments in both simulation
and experimental technologies have allowed us to approach the point whereby the
system sizes addressed by both types of techniques coincide. Simulations can often
fill a role of interpreting and interrogating experimental results, hopefully generating
predictions or questions which help experiments. One fascinating example of this is
the case of Hen Egg-White Lysozyme, where the work undertaken in the research
group ofAdrianMulholland has resulted in the biochemistry text book explanation of
the enzyme mechanism needing to be re-written because QM/MM calculations have
revealed significantly different details about the reaction [14]. There are some cases
where simulations can be used in order to investigate a new theory, but this is seldom
done in the case of atomic calculations as many simulation methods have their roots
in the well-founded theories of quantum mechanics and Newton’s laws. At the very
heart of atomistic simulations lies the calculation of the energy of a particular con-
figuration of atoms and the associated forces. The bane of many computationalists’
lives is ensuring the convergence of calculated properties with respect to simulation
parameters. Convergence must be achieved in order to instil confidence in the results
of the simulation. This aim is something that is continually strived for in this dis-
sertation. Performing comparisons between well-known and relatively simple ‘toy’
problems before embarking on an investigation of a question of scientific interest is
one way of attempting to ensure that simulations are adequately characterised and
are capable of generating interesting and reliable data. Assuming that the outcome
will be favourable without careful checking and treating simulation methods as a
black box can be very dangerous and may lead to misleading results. Following on
from careful testing of one’s methods, the results of previous authors’ simulations
of your intended system of interest should be studied, where available. In doing so,
this will demonstrate what previous methods have been applied to the system, give
you a potential starting point for your own simulations, and highlight any associated
problems with the system you intend to study. In general, the broad aims of the sim-
ulations should always be kept in mind. With a good set of aims to be adhered to,
any new results or problems that will emerge throughout a study, can be reasonably
managed.

Specifically, computation can allowone to investigate themost fundamental aspect
of any molecule, its geometric structure. Experimentally this can be determined
using techniques such as microwave spectroscopy or X-ray diffraction. For mole-
cules that are difficult to isolate or crystallise, computational approaches can be
used to efficiently predict the structures and related energies. We can formalise this
mathematically, aswill be done inmore detail within this dissertation, with an expres-
sion for the energy of the molecule as a function of the atomic coordinates, E(R).
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The classical physics laid down by Isaac Newton tells us that a force F is given by
the equation F = ma. There exists a force theorem for atoms and molecules that
tells us the derivatives of E(R) with respect to the atomic coordinates gives us the
forces on the atoms, F = −∇R E . By minimising the energy with respect to atomic
displacements (�xi ,�yi ,�zi ) one can find a locally stable energy minimum, where
each minima corresponds to a particular configuration. With the simple example of
the butane molecule, there are only two stable configurations, but for a protein or
enzyme, there can be many conformers on a wide energy landscape.

If the form of E(R) was readily obtainable then the structures of wide-ranging
molecular systems would be easily computed. In principle, an exhaustive confor-
mational search could provide all the minima for E(R) and this could be extended
to find transition state structures, which are much harder to observe in experiment,
leading to energies of activation. Using quantum mechanics, the solution of the
Schrödinger equation will yield E(R). However, as is discussed in this dissertation,
such a solution is difficult to obtain analytically and therefore careful approximations
must be made in order to solve the problem within mathematical and computational
limits. Such approximations can still only be applied to systems of a few hundred
atoms, beyond which one must use recently developed QM techniques that introduce
extra approximations (and hence require additional convergence testing) but have the
advantage that they can be applied tomuch larger system sizes (up tomany thousands
of atoms). These approaches are the subject of this dissertation. In addition, there
are MM approaches, where the energy expressions are described by bond stretch-
ing, angle bending, torsional energies and non-bonded terms that stem from Hooke’s
Law, Coulomb’s Law and Lennard-Jones potentials. These approaches require para-
materisation, such as assigning force constants, reference bond distances and atomic
charges. As discussed earlier in the chapter, the parameters for MM potentials are
often constructed from the results of QM calculations.

Some of the types of terms a student will likely encounter in the literature and text
books are described briefly in the following. Electronic energy minimisation is the
process of solving the electronic degrees of freedom in order to find the ground state
energy for the electrons in the system. The ground state of a quantum-mechanical
system is its lowest-energy state. Ground state electron configurations are the foun-
dation for understanding molecular bonding, properties, and structures. From the
electrons in an atom, to the differing orbitals and hybridisation, the ground state
electron configuration sheds light on many different atomic properties. Fundamen-
tally, understanding electron configuration leads to an understanding of the periodic
table. A Single-Point calculation is where the energy is calculated and the atomic
positions are not changed. This type of calculation is sometimes performed when
the computational expense of optimising the structure at the highest level of theory
is too great, so approximate structures are obtained from experiment or a lower level
of theory. Structural Relaxation or Geometry Optimisation is where the forces on
the atoms are sufficiently reduced below some threshold. A good criterion for which
is on the order of 0.02 eV/Å or 3 nN. A Transition State Search is the process of
finding and measuring the energy of a transition state structure between a reactant
and a product in a chemical reaction. There are many ways of achieving this and
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a discussion of some of them are given in this dissertation. As mentioned earlier,
one of the most important concepts to get to grips with is that of Convergence. This
can be defined as when a calculated property of interest no longer changes with the
parameters of your simulation.

Many other quantities can be investigated with an accurate ionic structure and
electronic structure, of which an exhaustive discussion can be found in the literature.
There exists a plethora of books available that explain the theory of atomistic com-
puter simulations, a particularly outstanding example is the text by Martin [15]. An
excellent book, that not only explains the principles behind simulations but teaches
you how to run them, is that of Veronika Brázdová and Dave Bowler [16]. This
very practical text will enable readers, such as beginning graduate students or senior
undergraduates, to understand, plan, run, and analyse their own independent atom-
istic simulations, and give them the confidence and understanding to decide which
method to use and which questions to ask in their research.

1.2 Synergy Between Theory and Experiment

An ever-present danger in having a tool as powerful as computational simulation is
that it may be used as an end purely in itself. Whilst it may be possible to learn a lot
about a system from computational investigations alone, interaction with experiment
and understanding the contextwithin the larger schemeof the scientific process is key.
Agreement between simulation and experiment is an important quantity to strive for
in computational investigations. In the case of well-established experimental results,
a new model can be tested to ensure it is performing correctly. Experimental results
can also be explained and interpreted through the use of simulation if an existing
mechanism is not currently decided upon. Computational methods can also push
experiments forward through predicting what should be seen in otherwise unob-
served scenarios. Just because a simulation can be run does not make it inherently
interesting or experimentally relevant. This is a very difficult lesson to learn for com-
putationalists. Collaboration with experimenters, or at least a firm understanding of
the experimental process, should form a crucial part of any computational investiga-
tion. In a recent review covering 60 years of condensed matter physics [17], Phillipe
Nozières stated:

As a theorist I never forgot my short experimental stretch: I am always interested by what
can be measured and how it can be measured. A dialogue between experiment and theory is
a difficult venture, which requires a lot of patience on both sides to find a common language.
When it succeeds it is incredibly rewarding.

so clearly this difficult venture is one that will no doubt pay dividends if successful.
There are many examples in the literature where a cursory nod is made in the direc-
tion of experiment only for the remainder of the paper to describe computational
investigations with no relevance to the requirements of experiment. It is particularly
easy to fall into this trap. For example, one could perform a calculation of a particular
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system at a temperature of 0K but experimentally the observation may take place at
600K! Not only must one be able to translate between the language of the exper-
imenter and the language of the theoretician, but one must also be able to ensure
adequate exchange of ideas between researchers in separate disciplines. When start-
ing to study systems of biological relevance from a physics perspective, one finds
a convention that a physics education does not generally teach. This is the notion
that biological systems have evolved, via natural selection, toward the powerful and
complex functions necessary for life. This evolutionary process has left biological
systems, at nearly every level, with an inherent heterogeneity. This presents a fun-
damental shift from what one encounters in physics, at the most basic level. For
example, one is taught that an electron is exactly the same as all the other electrons
that may surround it. This convention of the identical nature of particles is key to
quantum mechanics and statistical physics. However, due to the inherent complexity
encountered in biological systems, it is incredibly unlikely that any two ‘identical’
systems, be they protein molecules or two different cells in an organism, will ever
be entirely identical. It is becoming increasingly apparent, in this ever interdiscipli-
nary world, that the tools and expertise from one community can often be of use
in investigating the problems of another community. One such example is when the
importance of structural heterogeneity in proteins was first revealed through exper-
iments on myoglobin [18], using the cryogenic tools available to condensed matter
physicists. Different processes of the myoglobin protein were separated using a wide
range of temperatures, but this provoked widespread complaint that, as myoglobin
operates at around room temperature, experiments performed at a temperature of
4K were a waste of time. However, it was the knowledge that at room temperature
the protein will be rapidly moving through many different configurations that led to
the understanding that to probe the true molecular events involved in the reaction
process, one has to decompose it into its components.

When it comes to comparison with experiment for biological systems, total ener-
gies are essentially meaningless. It is the differences between these values, or energy
differences, that are more relevant, however, these still omit important entropic con-
tributions. Therefore one should be aware of the experimental conditions and prepa-
ration of the system. Perhaps one of the most obvious quantities one might wish to
comparewith experimentwould be the atomic geometry of the system.While reading
off the three-dimensional coordinate and species of an atom from your simulation is
easy, such structural data is often difficult to extract from experiment. In the case of
biological systems such as proteins that need to be crystallised, there are structural
domains that can be very difficult to resolve. Methods such as NMR imaging allow
certain structural information to be extracted, such as interatomic distances and tor-
sion angles. In the all important quest for experimental agreement, it would be all
too easy to assert that if simulations generate the same result as experiment then the
methods agree, and if not, they don’t. However, investigations are rarely that simple,
and it is frequently found that in investigating whether there is agreement between
simulation and experiment that a further understanding of a system’s underlying sci-
ence is truly found. The observed differences between experiment and computation
can arise from many factors, relating both to the methods used and the differences in
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what is being measured by each particular method. Returning to the ideas raised in
the previous section regarding convergence, it can be tempting to halt convergence
testing when sufficient agreement with experiment is achieved, but this is not a good
code of practice to adhere to. The simulation is converged when it is converged, not
just when it happens to match an experimental observation. Frequently, simulations
are performed at zero temperature whereas the corresponding experiments are not,
and this should, in general, give rise to a difference in the results. There are many
other factors that can complicate comparisons between simulation and experiment,
such as the level of impurities in an experimental sample, which may profoundly
affect the material’s properties, but which can be difficult to include in a simulation.
Complicating factors in biological simulations include the concentration of substrate
or any sort of buffers, which are solutions used in many biochemical techniques to
maintain the pH of a solution in a fairly narrow range suitable for the particular
process being investigated in experiment, which can be difficult to match in com-
putational work. The calculated values of certain properties can often be affected
by others and, therefore, in simulations, a key question to consider when simulating
water, for example, should be, is it better to simulate using experimental densities
and temperatures or would it in fact be best to work relative to the calculated freezing
point? Whichever field it is applied to and whatever science underlies it, the testing
of a simulation method is a vital part of any investigation and is a central theme in
this dissertation.

1.3 Dissertation Outline

The overview presented here is intended to act as an historical introduction to the
relevant themes discussed within this dissertation. The following chapter serves as an
introduction to—but far from a comprehensive outline of—the biological concepts
relevant to the work presented in this dissertation. Chapter 3 outlines the computa-
tional methods that have been extensively developed by other authors, and those that
have been implemented to study the systems discussed in later chapters. Chapter 4
presents a validation of themethods described inChap. 3, by demonstrating their abil-
ity to accurately treat small molecules, and includes a discussion of their potential for
application to larger biological systems. Chapter 5 investigates claims outlined by
other authors that the methods described in Chap.3 of this dissertation are unsuitable
for the correct and reliable treatment of biomolecular systems. In so doing it aims to
provide a methodology roadmap starting from experimentally resolved structures,
moving through system preparation to eventual optimisation of these structures to
ensure the resulting configurations make physical sense and demonstrate realistic
properties whilst, at the same time, producing robust and reliable results. Using the
methodological advances shown in Chap.5, Chap.6 investigates the rearrangement
of chorismate to prephenate in water and in the presence of the Bacilus subtilus cho-
rismatemutase (CM) enzyme. The aim of the chapter is to provide a demonstration of
proof-of-principle calculations and to show that no single method, of those presented
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in Chap.3, is necessarily the best choice for the task, but that a strategy combining
these approaches can allow an accurate investigation of CM and biomolecular sys-
tems in general. Chapter 7 summarises the findings of this dissertation, provides a
discussion of the implications of the investigations presented here, suggests ideas for
additional development of the work and further areas into which the ideas presented
in this dissertation can be explored.
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Chapter 2
Proteins, Enzymes and Biological Catalysis

In biology, proteins are uniquely important... the most
significant thing about proteins is that they can do almost
anything. But their main function is to act as enzymes
—Francis Crick, Society for Experimental Biology Symposium

1957

In their simplest form, proteins essentially comprise unbranched polymer chains
formed as a result of chemical bonding that takes place between the amino acid build-
ing blocks. This sequence of building blocks can be readily and rapidly determined
via experimentalmeans, building upon the pioneeringwork of Frederick Sangerwho,
in 1951, obtained the amino acid sequence of insulin [1], the first protein to have
its sequence determined. However, these sequences give as much information about
the biology of the system as a London telephone directory gives about the function
and wonder of the city. The primary sequence formed by the amino acids then forms
complex secondary structure through an intricate process of folding. The resulting
structure of the protein in turn defines its function and in the case of enzymes, the
particular type of reaction it catalyses. The objective of this chapter is to outline the
key biological concepts used throughout this dissertation.

2.1 Amino Acids

Hydrogen, carbon, nitrogen and oxygen constitute 96.5% of the mass of living cells
[2]. This rises to 98% when taking sulphur and phosphorous into consideration.
Therefore, it is clear that the chemistry of life is dominated by the lighter elements. It
is these elements that also form the amino acids, or residues, which are the subunits
of proteins and can be seen in Fig. 2.1. The general chemical formula for an amino
acid is NH2CαRHC′O2H. The four-fold coordinated central alpha-carbon atom (Cα)
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Fig. 2.1 The twenty-one naturally occurring amino acids. Charged, polar uncharged and hydro-
phobic side chains are also highlighted. Figure adapted, and pKa data acquired, from Ref. [3]

is sp3 hybridised and is attached to a hydrogen atom, along with the amino group
(NH2) and carboxylic acid group (C′O2H) and a side chain (R) by σ bonds. This
bonding pattern is common to all the twenty-one amino acids. What distinguishes
one amino acid from another is the side chain (R) attached to the alpha-carbon. The
amino acids are usually divided into three classes, depending on the chemical nature
of the side chain. Classes consist of amino acidswith strictly hydrophobic side chains,
those with charged residues and those with polar side chains. Most of the twenty-one
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naturally occurring amino acids were discovered in the 19th century. How and why
exactly this precise set of amino acids came to be chosen as the building blocks of
life is one of the mysteries of evolution.

2.2 Protein Structure

Proteins are formed in cells and are synthesised in ribosomes. Amino acids are joined
into linked chains during this synthesis processwhen the carboxyl group of one amino
acid condenses with the amino group of the next in order to eliminate water. This
can be seen in Fig. 2.2. This formation of peptide bonds is repeated as the chain
elongates, generating the so-called ‘backbone’ from which the side chains project.
The six atoms that surround each peptide bond are constrained in an arrangement
close to planar, comprising the alpha carbon (Cα), carboxyl carbon (C ′) and amide
nitrogen atoms [4]. The nitrogen, oxygen and subsequent alpha-carbon atoms are
also close to coplanar. This is due to the adjacent nitrogen and carbon atoms in
the N−H−C′=O unit being sp2 hybridised. Their positions and resultant secondary
structure can be defined in terms of the angles of rotation about the bonds connecting
the three atoms. These angles of rotation are conventionally labeled as ψ, φ and
ω, respectively. The peptide backbone dihedral, or torsion, angles are illustrated in
Fig. 2.3. The angle φ defines the rotation of the plane containing Cα

i , C
′
i , Oi and

Ni+1 around the Ni−Cα
i bond, controlling the C′−C′ distance. ψ defines the rotation

of the plane containing C′
i , Oi and Ni+1 around the Cα

i −Ci bond and controls the
N−N distance. ω defines rotation around the peptide bond C′−Ni+1 and controls
the Cα−Cα distance but in general is restricted to be close to 180◦ by the planar
nature of the peptide bond, therefore ω describes any deviation from planarity. One
consequence of the condensation process that leads to the formation of proteins is
that the amino group of the first amino acid and the carboxyl group of the last amino
acid remain intact. Thus a polypeptide is said to run from its amino (N−) terminus
to its carboxy (C−) terminus. The sequence of amino acids from which a protein is
built is termed its primary structure. One of the first important general principles to
emerge from protein structure studies was the fact that amino acids in the interior of
proteins have almost exclusively hydrophobic side chains. However, in order to form
the compact and folded protein structure seen in nature, new interactions are required
to compensate for the solvent interactions lost from the peptide background. Thus,
there is a major barrier to creating such a hydrophobic core from a protein chain. In
order to bring the side chains into the core, the main chain also needs to fold into
the interior. Each peptide unit on the backbone has one hydrogen-bond donor (the
N−H group) and one hydrogen-bond acceptor (the C′=O group) resulting in a very
polar and hydrophilic backbone. In order to replace the favourable interactions the
backbone would have with the solvent in an unfolded state, a more compact, folded
structure is required. Proteins solve this problem by forming secondary structures
where the backbone N−H and C′=O groups form intramolecular Hydrogen bonds
with each other.
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Fig. 2.2 The condensation process that leads to peptide bond formation. Figure adapted from
Ref. [2]

A protein will fold into a stable configuration, or secondary structure, determined
by its primary structure of amino acids. Although the secondary structure of proteins
can be incredibly varied, there are two commonly recurring motifs. These α helices
and β sheets, as illustrated in Fig. 2.4, are recurring patterns in protein structures
and are recognisably similar in virtually all natural proteins, despite varying in size
and amino acid composition. These ideas were first put forward by William Astbury
in 1933 when investigating keratin and collagen. Astbury proposed that unstretched
protein molecules formed a helix, which he called the α-form, and stretching caused
the helix to uncoil, forming an extended state which he called the β-form [5]. Whilst
the details of the Astbury model were incorrect, they correspond to the modern ideas
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Fig. 2.3 Peptide backbone dihedral angles

Fig. 2.4 a α helix and, b β sheet secondary structure motifs
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of secondary structurewhichwere later refined byPauling, Robert Corey andHerman
Branson in 1951, where Astbury’s original α and β notation was retained [6]. The
comformation formed by an entire protein chain, includingmany secondary structure
motifs, is termed its tertiary structure. In addition, if a protein is part of a complex
of multiple polypeptide chains then the complete structure is termed the quaternary
structure. This last concept remains outside the scope of this dissertation. Proteins are
involved in many diverse functions ranging from maintaining the chemical potential
across cell membranes to replicating DNA. However, most importantly and most
relevant to this dissertation, proteins are actively engaged as enzymes in the catalysis
of complex chemical reactions.

2.3 Enzyme Catalysis

The cells in a living organism carry out a never-ending series of chemical reactions.
This very often involves rearranging small organic molecules in a set of steps along
some metabolic pathway. The molecules at the start of this process will usually be
the result of photosynthesis in plants or the ingestion of food in mammals. The
subsequent pathway will then modify the input molecules sufficiently to meet the
requirements of the cells in the living system. Each cell performs many millions of
these reactions every second. However, the vast majority of the reactions that take
place would normally not happen at the mild temperatures and pressures found in
the cell. The key to accelerating, or catalysing, these reactions comes in the form
of enzymes. The primary function of an enzyme is to accelerate the reaction rate of
a particular chemical reaction relative to the equivalent uncatalysed reaction, or to
make a reaction happen that would not occur spontaneously. Enzymes are known to
catalyse around 4,000 biochemical reactions [7]withmany reaction rates on the order
of millions of times faster than the equivalent uncatalysed reactions. The initial ideas
laid down by Emil Fischer and his ‘lock-and-key’ model [8] were used to explain the
specificity found in enzymes through the fact that both the enzyme (the ‘lock’) and
the substrate (the ‘key’) were thought to possess specific complementary geometric
shapes that fit exactly into one another. However, while this is an excellent model for
describing enzyme-substrate specificity, it does not adequately explain how enzymes
manage to catalyse these chemical reactions. The work of Henry Eyring, Meredith
Evans and Michael Polanyi [9, 10] in the 1930s, and Linus Pauling [11] in the
1940s, revolutionised the theory of enzyme catalysis by hypothesising transition
state structures. It was Pauling’s further proposal that the powerful catalytic action
of enzymes could be explained by specific tight binding to the transition state species
in Ref. [11] that initially led the ideas of transition state stabilisation by enzymes,
and would lead the way to the modern transition state theory [12].
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Fig. 2.5 Schematic diagram illustrating how the activation barrier is reduced, compared to the
equivalent reaction in the absence of the enzyme, through stabilising the transition state in the
presence of the enzyme

It is now widely accepted that enzymes function to stabilise the transition states
lying between the reactants and products in the chemical reactions they are catalysing.
This stabilisation dramatically reduces the activation energy required for the reac-
tion to take place, therefore greatly accelerating the rate of reaction. An illustration
comparing the activation barriers for a reaction in the presence of an enzyme and
the equivalent reaction in the absence of the enzyme can be seen in Fig. 2.5. Draw-
ing from the conclusions that an enzyme binds strongly to its particular transition
state, the enzyme could also be expected to bind strongly to any synthesised mole-
cule which closely resembles the ionic structure of such a transition state. Whereas
reactant and products often participate in several enzyme reactions, the transition
state tends to be characteristic of one particular enzyme. Therefore any inhibitor,
or transition state analogue, would need to be specific for that particular enzyme.
The identification of transition state analogues, for a range of targets [13–16], fur-
ther supports the transition state stabilisation hypothesis for enzymatic catalysis.
How exactly this transition state stabilisation arises is still a topic of debate amongst
enzymologists, and the study of the precise mechanisms involved in, and origins of,
enzyme catalysis is an active area of research.

Many authors propose that the stabilisation arises mainly due to the favourable
Coulombic interactions between the enzyme and the substrate. Therefore, it is crucial
to treat the electrostatics of the, often polar, enzyme active site accurately. Enzymes
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can alter the electronic structure of their constituent substrates via protonation, pro-
ton abstraction, electron transfer, geometric distortion, hydrophobic partitioning and
interaction with Lewis acids and bases. This is usually achieved through short-range
forces from noncovalent bonds such as van derWaals interactions, electrostatic inter-
actions and hydrogen bonds. A hydrogen bond is the attractive interaction between
polar molecules where hydrogen is bound to a highly electronegative atom, such
as nitrogen or oxygen, forming an attractive interaction with another atom, such as
OH− − −N. The hydrogen bond is directional and so is at its strongest when the
three atoms involved are aligned. Electrostatic interactions occur between partially
charged groups on polar molecules, such as the charged amino acids. At very short
distances, any two atoms will show a weak van der Waals interaction, due to their
fluctuating electron densities. These three types of weak bonds have less than 1/20
the strength of a standard covalent bond [2]. However, despite a single example of
any of these bonds being relatively weak compared to a covalent bond, many of them
can form together to create a strong bonding arrangement that stabilises a particular
three-dimensional structure. These bonds involve atoms not only in the polypeptide
backbone but also the amino acid side chains. The stability of each folded shape
is significantly dependent upon the combined strength of large numbers of these
noncovalent bonds.

Whilst performing as an enzyme may seem like just another function in the long
list of jobs that proteins carry out in the cell, the collosal, unmitigated catalytic
power of enzymes is extraordinary [17]. The incredible efficiency demonstrated by
the OMPase enzyme, taking a reaction that would otherwise have a half life of 78
million years in solution, to complete in just 18 ms [18] is simply breathtaking. The
role of enzymes as biological catalysts is clearly critical for life as just under half
of all gene products are annotated as having enzymatic function [19]. In addition,
enzymes are often the targets of pharmaceutical development with a significant frac-
tion of approved clinical drugs modifying the behaviour of enzymes implicated in
human disease along with disease-causing pathogens [20]. Nearly half of all mar-
keted small molecule therapeutics are designed as enzyme inhibitors [21]. It is argued
that ligand design can benefit greatly from improved knowledge of enzyme mech-
anisms and key active-site interactions [22]. In addition, increasing importance is
being given to the prediction of enzyme-mediated adverse reactions [23] and drug
metabolism [24]. An understanding of the electronic, atomic and molecular origins
of how enzymes achieve their catalytic rate enhancements is a long-standing prob-
lem in biochemistry and, increasingly, within computational biology. In many cases,
experimental observation alone is not able to establish the mechanisms of enzyme-
catalysed reactions and the origins of catalysis, due to a lack of detailed microscopic
information regarding the transition state of the reaction in the enzyme.

Transition states are central to many of the fundamental questions that surround
chemical reactivity; the stabilisation of such states is a highly important process
for the efficiency of catalysis within enzymes. Transition state complexes can often
prove very difficult to observe directly in experiment due to their extremely short
lifetimes, typically picoseconds. However, it should be noted that the development of
femtosecond transition state spectroscopic techniques is currently an active area of
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experimental research [25–27]. Computationalmodelling could, potentially, comple-
ment experiment in this task as it has the ability to probe and analyse enzyme transi-
tion state configurations directly. It is becoming increasingly apparent that molecular
simulation has a vital role to play in elucidating the complex processes involved in
these outstanding natural catalysts. From the perspective of practical applications,
modelling techniques that can shed new light on enzyme-catalysed reactions can
then help to contribute toward the design of new drugs or the development of novel
industrial catalysts via biomimetic approaches. The concept of using atomistic simu-
lations to model enzyme-catalysed reactions, starting from the first pioneering works
of Warshel [28] and Scheiner [29], has risen to prominence in recent years and is
now at the point where the field of computational enzymology has securely laid
foundations [30, 31]. However, there still remains little consensus about the ideal
methodology to perform calculations on an enzyme of choice. Whilst it is outside
the scope of this dissertation to discuss the matter in detail, a more comprehensive
discussion of methods currently used, along with their associated advantages and
disadvantages, can be found in an elegant recent review by Lonsdale [32]. Eluci-
dation of the origins of enzyme catalysis involves understanding the origin of the
difference between the uncatalysed activation barrier and the activation barrier in the
protein, along with the associated enzyme mechanisms. The primary focus is on the
factor that governs the reduction of the activation barrier of the chemical step. This
is, of course, a question of energetics. One of the main objectives of this dissertation
is to provide energies of activation and reaction for the rearrangement of chorismate
to prephenate, both in the presence of the Bacillus subtilis chorismate mutase (CM)
enzyme and also the uncatalysed equivalent reaction in water.

2.4 Summary

This chapter has outlined the biological concepts relevant to the investigations pre-
sented in this dissertation. Starting from the fundamental building blocks of nature,
the amino acids, the discussion moved on to show how these component parts form
larger polypeptide chains. The types of secondary structure motifs that these long
chains fold into was then outlined. One of the essential dogmas of biology is that
structure informs function. Once the polypeptide chains discussed fold into their
correct structures they can then perform a variety of functions. One such function is
to catalyse reactions that would otherwise take too long to be of biological relevance,
demonstrating how enzymes are critical for life. The next chapter will discuss the
computational methods used in this work to study proteins and the tests required to
ensure that these methods accurately describe the physical properties we know are
crucial for correctly describing the biochemistry of these systems. Chapter 4 will
investigate the properties of small molecules that can adopt torsion angles, which
correspond to those outlined in this chapter, to match those of amino acids that form
extended α-helices and β-sheets discussed here. If these properties can be repro-
duced using the onetep and OPTIM codes, discussed in the following chapter, then

http://dx.doi.org/10.1007/978-3-319-19351-9_4
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the resulting simulations performedon larger systems inChaps. 5 and6 canbe trusted.
Transition state stabilisation, a key process in reducing the activation barrier, occurs,
partially, as a result of efficient overlap of electron orbitals between the residues in the
enzyme active site. The following chapter will outline accurate and efficient methods
for optimising the ionic and electronic structure of enzyme systems and discuss how
the bonding interactions between active-site residues and a substrate can be probed.
These interactions in the active site of the CM enzyme can be analysed in detail, and
this will be investigated in Chap.6.
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Chapter 3
Computational Techniques

Let us, as nature directs, begin with first principles
—Aristotle, Poetics I

Themajor clash between themechanics of the classical and that of the quantum is the
fundamental property of uncertainty. Einstein’s retort that “God does not play dice”
would be forever a hallmark of the stubbornness of staunch believers in a classical
deterministic view of everything in the universe from the galaxies in the furthest
region imaginable to the individual protons and electrons that make up everything
around us. The unreasonable nature of the fear of uncertainty and the probabilistic
nature of matter on the small scale can be adequately reflected through an excerpt
from the writings of Locke [1]:

If we will disbelieve everything, because we can not certainly know all things; we shall do
muchwhat as wisely as he, who would not use his legs, but sit still and perish because he
had no wings to fly

In essence, quantum mechanics brings a vast arsenal of machinery at the disposal
of physicists, chemists and now, seemingly, even biologists [2], allowing scientists
of any discipline to benefit from the elegant principles contained within the the-
ory. However, as outlined in the introduction to this dissertation, it is not quantum
mechanical approaches alone that are required to accurately describe biomolecular
systems. In order to reduce computational expense and to greatly expand the sample
size from which results can be extracted, classical approaches must also be used.
This chapter should be regarded as an overview of the many key theoretical ideas
and methods implemented in this dissertation and not a place for detailed discussion.
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3.1 Many-Body Quantum Mechanics

Many problems related to the electronic structure of matter—not including relativis-
tic effects, magnetic fields and quantum electrodynamics, can be adequately and
accurately described by the equation due to Schrödinger [3]. The equation was pub-
lished in 1926 and was soon applied to multi-electronic atoms and to polyatomic
systems such as molecules [4] and solids [5]. The aim of these works was to find a
description of matter at the atomic scale, i.e. in terms of atomic nuclei and electrons.
In general terms, one can imagine a piece of matter as a collection of interacting
atoms. This ensemble of particles may be in the gas phase (molecules, clusters) or
in a condensed phase (bulk solids, surfaces, wires). It could be in a solid, liquid
or amorphous phase, either homogeneous or heterogeneous (molecules in solution,
interfaces, adsorbates on surfaces). However, at this scale, one can unambiguously
describe all these systems as a set of atomic nuclei and electrons interacting via
coulombic, electrostatic forces. Formally, one can write the Hamiltonian of such a
system in the following general form:

Ĥ = − �
2

2me

N∑

i=1

∇2
i − e2

P∑

I=1

N∑

i=1

Z I

|ri − RI | + e2

2

N∑

i �= j

N∑

j �=i

1

|ri − r j | − �
2

2

P∑

I=1

∇2
I

MI

+ e2

2

P∑

I=1

P∑

J �=I

Z I Z J

|RI − RJ |
= T̂e + V̂ne + V̂ee + T̂nn + V̂nn (3.1)

with electrons,with charge e andmassme denoted by lower case subscripts and nuclei
with charge Z I and mass MI denoted by upper case subscripts. R = {RI , I =
1, . . . , P} is a set of P nuclear coordinates. r = {ri , i = 1, . . . , N } is a set of
N electronic coordinates. T̂e is the electron kinetic energy, V̂ne is the electron-ion
interaction, V̂ee is the electron-electron interaction, T̂nn is the nuclear kinetic energy
and V̂nn is the ion-ion interaction. One can then use this Hamiltonian to solve the
time-independent Schrödinger equation:

Ĥ�n(R, r) = εn�n(R, r) (3.2)

where εn are the energy eigenvalues and �n(R, r) are the corresponding eigen-
states, or wave functions, which must be antisymmetric with respect to exchange of
electronic coordinates in r, since the electrons are fermions and the total electronic
wave function should change sign whenever the coordinates of any two electrons
are exchanged, and symmetric or antisymmetric with respect to exchange of nuclear
variables in R. Different nuclear species are distinguishable, but nuclei of the same
species also obey a specific statistics according to the nuclear spin. They are fermions
for half-integer nuclear spin (e.g. H, 3He) and bosons for integer spin (e.g. D, 4He,
H2). At the atomic energy scales which are the focus of this dissertation, the nuclei
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are extremely well-described as massive point charges and their internal structure is
safely neglected. The wave functions are single-valued, square-integrable functions
of the system parameters and provides a complete description of the system. Linear
Hermitian operators act on a wave function and correspond to the physical observ-
ables, those dynamical variables which can be measured, e.g. position, momentum
and energy.

In practice, the problem posed in Eq. (3.2) is almost impossible to treat within a
full quantummechanical framework. There are only a few cases, such as hydrogenoid
atoms or the H+

2 molecule, where a complete analytic solution available. Exact
numerical solutions are also limited to a few cases, mostly atoms and very small
molecules. There are several features that contribute to this difficulty, but the most
important is that this is a multi-component, many-body system, and the two-body
nature of the Coulomb interaction makes Eq. (3.2) not separable.

Confining the problem to the case of an atom with Z electrons, and focusing
on the electronic wave function, in order to respect the antisymmetry of the wave
function against electron exchange, such a wave function can in principle be written
as an antisymmetrised product of one-electron wave functions (a so-called Slater
determinant). This assumes, however, some kind of separability of the Schrödinger
equation, implying that the probability of finding an electron at some point in space
is essentially independent of where the other electrons are located. The repulsive
electron-electron interaction is quite at odds with this picture, because an electron
located at point r in space precludes other electrons from approaching this location.
Hence, the probability of finding an electron at r depends on the location of the
other Z − 1 electrons. This phenomenon is known as correlation, and it implies
that the exact many-body wave function should contain factors depending on two
electronic coordinates. Therefore, the image in terms of one-electron wave functions
can be somewhat crude in many cases. This means that the full Schrödinger equation
cannot be easily decoupled into a set of equations, so that, in general, we have to deal
with 3(P + N ) coupled degrees of freedom. The usual choice is to resort to a few
reasonable and well-controlled approximations, which encompass a wide variety
of problems of interest. This can be achieved through two major approximations:
the adiabatic separation of the nuclear and electronic degrees of freedom, and the
classical treatment of atomic nuclei.

The time scale associated with the motion of nuclei is usually much slower than
that associated with electrons. The most unfavorable case of a single proton already
corresponds to amass ratio of 1:1836, i.e. less than 1%.Within a classical picture one
could say that, under typical conditions, the velocity of the electron is much larger
than that of the heavy particle (the proton). In 1927, Max Born and his student,
Julius Robert Oppenheimer, proposed a scheme for separating the motion of nuclei
from that of the electrons [6]. They showed that no mixing of different electronic
stationary states happened due to the interaction with the nuclei. Therefore, under
appropriate conditions, the electrons do not undergo transitions between stationary
states. This is called the adiabatic approximation. The electrons can then be thought
of as instantaneously following the motion of the nuclei, while remaining always in
the same stationary state of the electronic Hamiltonian. As the nuclei follow their
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dynamics, the electrons instantaneously adjust their wave function according to the
nuclear wave function. This approximation ignores the possibility of having non-
radiative transitions between different electronic eigenstates. Transitions can only
arise through the coupling with an external electromagnetic field, but this issue will
not be addressed in this dissertation.

These ideas can be cast in amoremathematical framework by proposing a solution
to Eq. (3.2) in the form of:

�(R, r, t) =
∑

n

�n(R, t)�n(R, r) (3.3)

where �n(R, t) are wave functions describing the evolution of the nuclear sub-
system in each one of the adiabatic electronic eigenstates �n(R, r). These satisfy
the time-independent Schrödinger equation:

ĥe�n(R, r) = En(R)�n(R, r) (3.4)

where the electronic Hamiltonian is defined as:

ĥe = T̂ + Ûee + V̂ne = Ĥ − T̂n − V̂nn (3.5)

In this partial differential equation on the r variables, the 3P nuclear coordinates
R enter as parameters. This expansion, which is always mathematically possible,
is called the expansion in the adiabatic basis, because �n(R, r) are solutions of
the time-independent electronic Schrödinger equation, corresponding to a particular
nuclear configuration. Equation (3.4) has to be solved for all nuclear configurations
R where the nuclear wave function is non-vanishing. By replacing this ansatz into the
full Schrödinger equation one obtains a set (infinite, in principle) of coupled partial
differential equations containing off-diagonal terms. The off-diagonal termswill mix
(excite) the different electronic eigenstates along the temporal evolution. These are
precisely the non-radiative transitions alluded to previously. If this is the case, then
the dynamics is said to be non-adiabatic. However, if the off-diagonal terms can be
neglected, then an expression like (3.3) is valid because the nuclear dynamics has no
means to cause electronic transitions, and the electrons remain always in the same (n)
adiabatic state (ground or excited). In this case, the dynamics is said to be adiabatic.
The necessary condition for neglecting the non-adiabatic couplings is that:

m

M

∣∣∣∣
��v

Eq(R) − En(R)

∣∣∣∣ � 1 (3.6)

where �v is the maximum frequency of rotation of the electronic wave function
due to the nuclear motion, and the energies in the denominator correspond to the
electronic adiabatic eigenstates (the energy gap if q = 1 and n = 0). The ratio of
electronic to nuclear mass m/M is always smaller than 5× 10−4, thus justifying the
adiabatic approximation unless a very small gap occurs, as for open-shell, conical
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intersections or Jahn-Teller systems. The case of lighter particles such as muons
would be different. Typical electronic excitations are of the order of 1 eV, while
typical nuclear excitations (phonons) are of the order of 0.01 eV. This indicates
that there is a clear separation of energy (and consequently time) scales. There are
situations in which this approximation is not adequate, but they are rather exceptional
cases and shall not be addressed in this dissertation.

3.2 Density-Functional Theory

The full many-body wave function is not a single Slater determinant, otherwise
Hartree-Fock theory would be exact. A different line of thought to solving the elec-
tronic Hamiltonian drove Thomas [7] and Fermi [8] to propose that the full electronic
density was the fundamental variable of the many-body problem. From this idea
they derived a differential equation for the density without resorting to one-electron
orbitals. The Thomas-Fermi approach was developed in the hopes that the energy
can in fact be written exclusively in terms of the electronic density. The original
Thomas-Fermi approximation was actually too crude, mainly because the approxi-
mation used for the kinetic energy of the electrons was unable to sustain bound states.
This idea, however, was intuitive at the time, but a proof that this was the case had to
wait more than thirty years. In 1964, Pierre Hohenberg and Walter Kohn formulated
and proved a theorem that put on solid mathematical grounds the former ideas [9].
The theorem is divided into two parts.

Thefirst part of theHohenberg-Kohn theorem (HK1) states that the external poten-
tial is uniquely determined by the electronic density, besides some trivial additive
constant. In order to prove HK1, one should first assume the opposite to be true, i.e.
that the external potential is not uniquely determined by the density. In this case one
should be able to find two potentials, ν and ν ′, such that their ground state density n
is the same. Let� and E0 = 〈�|Ĥ |�〉 be the ground state wave function and ground
state energy of the Hamiltonian n Ĥ = T̂ + V̂ext + Ûee. One should also let �′ and
E ′
0 = 〈�′|Ĥ ′|�′〉 be the ground state wave function and ground state energy of the

Hamiltonian Ĥ ′ = T̂ + V̂ ′
ext + Ûee. According to the Rayleigh-Ritz variational

theorem, HK1 then asserts:

E0 < 〈�′|Ĥ |�′〉 = 〈�′|Ĥ ′|�′〉 + 〈�′|Ĥ − Ĥ ′|�′〉
= E ′

0 +
∫

n(r)
(
νext(r) − ν ′

ext(r)
)
dr (3.7)

where HK1 uses the fact that different Hamiltonians necessarily correspond to dif-
ferent ground states � �= �′. Since the potential is a multiplicative operator, one can
exchange the roles of � and �′ (and Ĥ and Ĥ ′) to obtain:
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E ′
0 < 〈�|Ĥ ′|�〉 = 〈�|Ĥ |�〉 + 〈�′|Ĥ ′ − Ĥ |�′〉

= E0 −
∫

n(r)
(
νext(r) − ν ′

ext(r)
)
dr (3.8)

where upon adding the inequalities (3.7) and (3.8) gives E0 + E ′
0 < E ′

0 + E0, which
is absurd. Therefore, by proof ab adsurdum, there can not be νext(r) �= ν ′

ext(r) that
correspond to the same electronic density for the ground state, unless they differ by
some trivial additive constant. There is a corollary to this proof in that since n(r)
uniquely determines νext(r), it also determines the ground state wave function �,
which should be obtained by obtaining the full many-body Schrödinger equation.

The second part of the Hohenberg-Kohn theorem (HK2) begins with ñ(r)which is
a non-negative density, normalised to N . One can then define the variational energy
Eν :

Eν[ñ] = F[ñ] +
∫

ñ(r)νext(r)dr (3.9)

where F[ñ] is defined as:

F[ñ] = 〈�[ñ]|T̂ + Ûee|�[ñ]〉 (3.10)

where �[ñ] is the ground state of a potential which has ñ as its ground state density,
such that E0 = Eν[n] verifies E0 < Eν[ñ] for any ñ �= n, and is thus the ground
state energy. HK2 then considers:

〈�[ñ]|Ĥ |�[ñ]〉 = F[ñ] +
∫

ñνext(r)dr

= Eν[ñ] ≥ Eν[n] = E0 = 〈�[n]|Ĥ |�[n]〉 (3.11)

where the inequality effectively follows from the Rayleigh-Ritz variational principle
for the wave function, but instead applied to the electronic density. Therefore, the
variational principle states that:

δ

{
Eν[n] − μ

(∫
n(r)dr − N

)}
= 0 (3.12)

which leads to:

μ = δEν[n]
δn

= νext(r) + δF[n]
δn

(3.13)

The knowledge of F[n] implies the knowledge of the solution of the full many-body
Schrödinger equation. F[n] is the so-called universal functional, which does not
depend explicitly on the external potential, it depends only on the electronic density.
In the Hohenberg-Kohn formulation, F[ñ] = 〈�[ñ]|T̂ + Ûee|�[ñ]〉 where � is the
ground state many-body wave function. HK1 and HK2 form the mathematical basis
of DFT.



3.2 Density-Functional Theory 25

In the Hohenberg-Kohn theorem the electronic density determines the external
potential. However, it is also required that the density corresponds to some ground
state antisymmetric wave function. While this is a necessary condition for the true
density n, it may not be the case for other trial densities ñ. In fact, unacceptable
densities can easily be obtained in a variational search strategy if this is not done
carefully. With this observation in mind, in 1982 Mel Levy reformulated DFT in
such a way that the antisymmetric origin of the density is guaranteed [10]. Levy used
the constrained search method, which was then widely applied by several authors in
similar contexts. The main idea is to redefine the universal functional F[n] given by
Expression (3.10) in the following way:

F[n] = min
�→n

{
〈�|T̂ + Ûee|�〉

}
(3.14)

where n is any non-negative density such that
∫

n(r)dr = N and
∫ |∇n

1
2 (r)|2dr <

∞, with the additional constraint that the density should arise from an antisymmetric
wave function. The search is thus constrained to the subspace of all the antisymmetric
� that give rise to the same density n, thus eliminating the conceptual difficulty of
possible unphysical densities.

Using DFT one can determine the electronic ground state density and energy
exactly, provided that F[n] is known. In fact, since the density determines the poten-
tial uniquely, by solving the full many-body Schrödinger equation, one can determine
uniquely the many-body wave functions, ground and excited states. In 1965, Kohn
and Sham devised a practical scheme for determining the ground state [11]. Themain
problem at this stage is with the kinetic energy:

T = 〈�|T̂ |�〉 = − �
2

2m

N∑

i=1

〈�|∇2
i |�〉 = − �

2

2me

∫ [
∇2

r ρ1(r, r′)
]

(3.15)

because its explicit expression in terms of the electronic density is not known.
According to Eq. (3.15) the exact calculation of the kinetic energy term requires
the knowledge of the Laplacian of the one-body density matrix, which is not related
to the density in an obvious manner. The main problem with the approach is that
the kinetic operator is inherently non-local. The approach suggested by Kohn and
Sham starts from the observation that a system of non-interacting electrons is exactly
described by an antisymmetric wave function of the Slater determinant type, made
of one-electron orbitals. As in Hartree-Fock theory, for such a wave function the
kinetic energy can be easily obtained in terms of one-electron orbitals. In this case
the ground state density matrix ρ1(r, r′) is given by:

ρ1(r, r′) =
∞∑

i=1

fi 〈φi |∇2|φi 〉 (3.16)
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Kohn and Sham’s idea was that, if one can find a system of non-interacting elec-
trons that produces the same electronic density of the interacting system, then the
kinetic energy of the non-interacting system can be calculated exactly via Eq. (3.16).
However, this is not the exact kinetic energy of the interacting system. The miss-
ing fraction is due to the fact that the true many-body wave function is not a Slater
determinant. There is then a correlation contribution to the kinetic energy that is not
taken into account, which must be included in the correlation energy term. Kohn and
Sham’s approach assumes that the equivalent non-interacting system, i.e. a system of
non-interacting electrons whose ground state density coincides with that of the inter-
acting system, does exist. This system will be called the non-interacting reference
system of density n(r), and is described by the Hamiltonian:

ĤR =
N∑

i=1

[
− �

2

2me
∇2

i + νR(ri )

]
(3.17)

where N is the number of electrons. Here, the reference potential νR(r) is such that
he ground state density of ĤR equals n(r) If that is the case, Hohenberg and Kohn’s
theorem ensures that the ground state energy equals the energy of the interacting
system. This Hamiltonian has no electron-electron interactions. Therefore, its eigen-
states can be expressed in the form of Slater determinants. For this discussion the
assumptions are that the occupation numbers are 2 for i ≤ Ns and 0 for i > Ns,
with Ns = N/2 the number of doubly occupied orbitals. For simplicity, a possible
spin dependence is ignored. This would arise, for example, in magnetic or open shell
systems. Within these assumptions, the density reads:

n(r) = 2
Ns∑

i=1

|φi (r)|2 (3.18)

while the kinetic term is:

TR[n] = − �
2

me

Ns∑

i=1

〈φi |∇2|φi 〉 (3.19)

The single-particle orbitals φi (r) are the Ns lowest-energy eigenfunctions of the
one-electron Hamiltonian:

ĤKS = − �
2

2me
∇2 + νR(r) (3.20)

which are obtained by solving the one-electron Schrödinger equation:

ĤKSφi (r) = εiφi (r) (3.21)
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The universal density functional can be re-written to include TR[n] from Eq. (3.19):

F[n] = TR[n] + 1

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′ + ẼXC[n] (3.22)

which defines a modified exchange and correlation energy ẼXC, which accounts also
for the kinetic correlation ignored in TR[n]. By substituting this expression for F into
the total energy functional, Eν[n] = F[n] + ∫

n(r)νext(r)dr, then the Kohn-Sham
energy functional is obtained:

EKS[n] = TR[n] +
∫

n(r)νext(r)dr + 1

2

∫ ∫
n(r)n(r′)
|r − r′| drdr′ + ẼXC (3.23)

In thisway the energy functional is expressed in terms of the Ns orbitals thatminimise
the non-interacting electronic kinetic energy under the fixed density constraint. The
one-electron orbitals are usually called the Kohn-Sham orbitals. The Kohn-Sham
orbitals satisfy the one-electron Kohn-Sham equations (3.21), but so far there is no
expression for the reference potential νR. All that is know is that νR is a potential that
ensures that the density of the non-interacting reference system is the same as the
true density of the interacting system. It should then be possible to determine it by
minimising the KS functional (3.23) with respect to the density, under the constraint
that this density integrates to N particles. The variational principle is the now applied
to the Kohn-Sham functional:

δ

δn(r)

(
EKS[n] − μ

∫
n(rdr)

)
= 0 (3.24)

obtaining the following equation for the minimising ground state density:

δTR[n]
δn(r)

+ νext(r) +
∫

n(r′)
|r − r′|dr′ + ẼXC[n]

δn(r)
= μ (3.25)

where the functional derivative δTR[n]/δn(r) can be readily obtained by considering
the non-interacting Hamiltonian ĤR of Eq. (3.17). Since the particles in the reference
system only interact with the reference potential, and not between themselves, this
Hamiltonian corresponds to the energy functional:

EνR[ñ] = TR[ñ] +
∫

ñ(r)νR(r)dr (3.26)

whose ground state energy is the same as that of the interacting system because
they share the same electronic density. Therefore, in general EνR[ñ] ≥ E0 and the
equality is verified only for the ground state density n. This means that the functional
derivative of EνR [ñ]must vanish for the ground state density.Applying the variational
principle to EνR[ñ], one obtains:
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δTR[n]
δn(r)

+ νR(r) = μR (3.27)

where μR is the chemical potential of the non-interacting system, which should
coincide with that of the interacting system μ. Otherwise, if the interacting and the
equivalent non-interacting reference system were put into contact, there would be
charge flow from one to the other. By comparing Eqs. (3.25) and (3.27) and setting
μR = μ, one obtains the following expression for the reference potential:

νR(r) = νext(r) +
∫

n(r′)
|r − r′|dr′ + δ ẼXC[n]

δn(r)
(3.28)

The reference potential depends on the solutions of the one-electron Schrödinger
equation (the Kohn-Sham orbitals) through the electronic density and so the equation
must be solved self-consistently, making sure that the density used to construct the
reference potential coincides (within some tolerance) with that obtained from the
solutions of the equation via (3.18).

3.2.1 Exchange and Correlation

The strategy to attack the many-body electronic problem presented in the previous
section consisted of dividing the total energy of an electronic system into a number of
different contributions. The classical electron-electron interaction, or Hartree term,
and the interaction of the electrons with external fields, in particular that of the
atomic nuclei, are known as explicit functionals of the electronic density. It can be
seen that their only dependence on the electronic variables is through the electronic
density. In that sense it is said that they are functionals of the density. The non-
interacting kinetic energy and the exchange energy are known as functionals of the
non-interacting orbitals, which are in turn (unknown) functionals of the density. The
correlation energy is a big unknown. The exchange energy, although well known as
a function of the single-particle orbitals, involves the calculation of computationally
expensive integrals. In addition, up to date there is no approximation available where
the correlation energy is treated at a comparable level of accuracy. Therefore, if
exchange is treated exactly as a functional of the orbitals, it will not be able to
compensate for any errors introduced when approximating the correlation term.

Electrons will repel one another according to Coulomb’s law with a repulsion
energy of 1

|r−r′| . Therefore electrons will move in order to avoid one another. In
other words, their motion will be correlated. For a given basis set, to be discussed in
the next section, the correlation energy is equal to the difference between the exact
energy and the energy calculated using the Hartree-Fock approach. To illustrate the
importance of this correlation energy, for the helium atom, the difference in energy
between treating the interactions between the two electrons in an average, as opposed
to an instantaneous, manner is on the order of 1 eV, or 23 kcal mol−1, and in general
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this can be thought of as the error, per electron pair, in the Hartree-Fock approach
[12]. In addition, it was in 1925 when Wolfgang Pauli formulated the quantum
mechanical principle, that now bears his name, stating that no two identical fermions
may simultaneously occupy the same quantum state [13]. The result of this is that the
wave function of indistinguishable fermions must be antisymmetric, or change its
sign, upon the exchange of two identical fermions. The resultant exchange interaction
alters the expectation value of the energy, upon the overlap of wave functions of two
or more electrons, as it increases the expectation value of the separation between the
particles. The effects of this exchange interaction were discovered by Heisenberg
[14] and Dirac [15] in 1926; it has no classical analogue.

It seems sensible to treat both the exchange and correlation terms to a similar
level of approximation. The idea now is to look for consistent approximations to
exchange and correlation where both terms are treated in a similar manner. One of
the natural starting points is the homogeneous electron gas, which is a simplified
model for metallic systems. This is the simplest system of correlated electrons, and
as such has been studied in great detail. Using the homogeneous electron gas as
a reference may not seem a particularly good idea for molecular systems, as their
electronic densities are far from uniform. Perhaps this was the reason why DFT
took so long to be adopted by the computational chemistry community, because
most of the available approximations are derived from the homogeneous electron
gas. The most widely used approaches to the exchange-correlation problem within
DFT are the local density and generalised gradient approximations (LDA and GGA,
respectively). The LDA has been for a long time the most widely used approximation
to the exchange-correlation energy. It was proposed in the seminal paper byKohn and
Sham [11]. The main idea is to consider a general inhomogeneous electronic system
as locally homogeneous, and then to use the exchange-correlation hole corresponding
to the homogeneous electron gas, which is known to an excellent accuracy.

In practice, energy terms local in the density are calculated by integrating over
the volume of the system, with the corresponding energy density calculated at the
values that the electronic density assumes at every point r in the volume.

One defines the exchange-correlation energy as:

EXC = 1

2

∫ ∫
n(r)n(r′)
|r − r′| [g(r, r′) − 1]drdr′ (3.29)

where the electron-electron pair distribution, or pair correlation function, represents
the probability of finding an electron at r given that there is another electron at r0. The
presence of this electron discourages other electrons from approaching it because of
the Coulomb repulsion. Therefore, the pair distribution function interpolates from
zero at r = r0 to one at infinite distance. The original definition (3.29) of the
exchange-correlation energy, which does not contain kinetic contributions, can be
used only if the exact expression for the kinetic energy is known. However, within
DFT this is not the case. In Kohn-Sham theory the non-interacting expression for the
kinetic energy is used, and then the exchange-correlation term is redefined as:
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ẼXC[n] = EXC[n] + T [n] − TR[n] (3.30)

which defines a modified exchange and correlation energy ẼXC, different from the
EXC given by (3.29) in that it accounts also for the kinetic correlation ignored in TR .
The kinetic contribution to the exchange term is given by Pauli’s principle, and this
is already contained in TR[n] and in the density when adding up the contributions
of the Ns, or N , lowest eigenstates according to (3.18) and (3.19). Therefore, the
exchange term is not modified by the introduction of the non-interacting reference
system.

One can interpret the exchange-correlation energy ẼXC[n] as the Coulomb inter-
action between the electronic density and some displaced charge density. This can
be done by defining the exchange-correlation hole in the following way:

ñXC(r, r′) = n(r′)[g̃(r, r′) − 1] (3.31)

so that the exchange-correlation energy is written:

ẼXC[n] = 1

2

∫ ∫
n(r)ñXC(r, r′)

|r − r′| drdr′ (3.32)

where g̃(r, r′) is obtained by averaging the pair correlation function g(r, r′) over the
strength of the electron-electron interaction, of which details can be found elsewhere
[16]. The XC hole ñXC represents a fictitious charge depletion due to exchange and
correlation effects, i.e. due to the fact that the presence of an electron at r reduces
the probability of finding a second electron at r′ in the vicinity of r. It corrects for
the fact that the Hartree contribution to the energy completely ignores this depletion.
If one separates the exchange and correlation contributions it is easy to see that the
displaced electron arises exclusively from the exchange part. This is a consequence
of how the electron-electron interaction has been separated.

In the LDA, one re-writes the expression for the (non-local) exchange-correlation
hole in the following way [11]:

ñLDA
XC (r, r′) = n(r)

{
g̃HEG

[|r − r′|, n(r)
] − 1

}
(3.33)

where g̃HEG is the pair correlation function for the homogeneous electron gas. This
pair correlation function depends only on the distance between r and r′ (the system
is homogeneous), and must be evaluated for the density n that locally assumes the
value n(r). With this definition the exchange-correlation energy can be written as
the average of an energy density εLDAXC [n]:

ẼLDA
XC [n] =

∫
n(r)ε̃LDAXC [n(r)]dr (3.34)
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weighted with the space-dependent electronic density of the system. The expression
for the exchange-correlation energy density in terms of the exchange-correlation
hole is:

ε̃LDAXC [n] = 1

2

∫
ñLDA
XC (r, r′)
|r − r′| dr′ (3.35)

While the exchange-correlation energy EXC[n] should be a functional of n, there is
no reason why the energy density should also be so. In fact, in general εXC is not a
functional of the density. From its very definition it is clear that it has to be a non-
local object, because it reflects the fact that the probability of finding an electron at r
depends on the presence of other electrons in the surroundings, through the exchange-
correlation hole. However, in the LDA it becomes a functional of the density because
it corresponds to a homogeneous system where ρ is the same everywhere. In 1989,
Jones and Gunnarsson discussed thoroughly the LDA, by analysing the performance
for different types of systems, in particular atomic and molecular, but also solids.
Many of the successes of the approximation can be traced back to two fundamental
properties of the LDA exchange-correlation hole:

• It satisfies the sum rule expressing that the exchange-correlation hole contains
exactly one displaced electron. This is because for each r, g̃HEG is the pair corre-
lation function of an existing system, i.e. the homogeneous gas at density n(r).

• Even if the exact ñXC is not spherically symmetrical, what really matters for the
exchange-correlation energy is the spherical average of the hole. This spherical
average is reproduced to a good extent by the LDA,whose ñXC is already spherical.

One of the most significant components missing from the LDA is a description
of the variation of the electron density from place to place and this approximation
can be improved upon by including the gradient of the electron density. Increased
numerical accuracy has been demonstrated in the literature for many systems using
the so-called generalised gradient approximation (GGA) which has resulted in an
entire family of functionals based on this approach. GGA functionals contain an
additional term that includes the gradient of the electron density:

ẼGGA
XC [n(r)] =

∫
n(r)ε̃GGAXC (n(r),∇n(r)) dr (3.36)

with the corresponding exchange-correlation potential equal to:

νGGAXC = ε̃GGAXC (n(r)) + n(r)
∂ε̃GGAXC (n (r))

∂n(r)
+ n(r)

∂ε̃GGAXC (n (r))
∂∇n(r)

(3.37)

where the terms with partial derivatives in Eq. (3.37) are due to the change in the
exchange-correlation hole with density. This derivative also appears in the equivalent
LDA potential. For an insulator, this derivative is discontinuous across a band gap,
due to the fact that the nature of the states change discontinuously as a function of
the density. The result is a ‘derivative discontinuity’ where the Kohn-Sham potential
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for every electron in a material changes by some constant amount, following the
addition of a single electron [17, 18]. However, the largest error of this approximation
actually arises from the gradient contribution to the correlation term. Provided that
the problem of the correlation term can be cured in some way, such as the real space
cutoff method of Langreth and Mehl [19], the biggest problem remains with the
exchange energy. One of the main lessons learnt from the early works of Gross and
Dreizler [20] and Perdew [21] is that the gradient expansion has to be carried out very
carefully in order to retain all the relevant contributions to the desired order. Another
important lesson is that these expansions easily violate one or more of the exact
conditions required for the exchange and correlation holes, such as the normalisation
condition, the negativity of the exchange density, or the self-interaction cancelation.
Perdew showed that imposing these conditions to functionals that originally do not
verify them results in a remarkable improvement of the quality of exchange energies
[21]. On the basis of this type of reasoning, a number ofmodified gradient expansions
have been proposed along the years, mainly between 1986 and 1996. These have been
named generalised gradient approximations (GGAs). Normally GGAs improve over
some of the drawbacks of the LDA, although this is not always the case. A thorough
comparison of different GGAs has been done by Filippi et al. [22].

The specific GGA functional formulated by Perdew et al. (PBE) [23] has proved
remarkably successful in many DFT applications. This particular form of the GGA
retains the correct features of the LDA and combines them with the inhomogeneity
features that are assumed to be energetically the most important ones. It sacrifices a
few correct, but less important, features, like the second-order gradient coefficients
in the slowly varying limit and the non-uniform scaling of the exchange energy in
the rapidly varying density region. The PBE functional is very satisfactory from a
theoretical point of view, because it verifies many of the exact conditions for the XC
hole, and it does not contain any fitting parameters. It is the PBE functional that is
used throughout the DFT calculations presented in this dissertation.

One of the most significant problems with DFT as a theory is that each elec-
tron moves in the potential of the total electron density which includes the electron.
This self-interaction error is clearly incorrect as a single, isolated electron will not
be repelled by itself. Within Hartree-Fock theory, the diagonal Coulomb integrals,
corresponding to the self-interaction, are exactly canceled by the corresponding diag-
onal exchange integrals. Despite being a seemingly simple concept, within DFT a
proper mathematical formulation of this problem still remains a challenge. The self-
interaction error is the origin of many qualitative and quantitative failings within
DFT and many authors are providing continual efforts toward its removal [24]. One
approach to remove this error from DFT is to include the Hartree-Fock expression
for the exchange interaction. Formally, this approach scales as the fourth power of
the number of orbitals, but a current area of research is to make this cost linear for
localised orbitals [25].

The problems discussed for the LDA result in energy differences which are sig-
nificantly larger than ‘chemical accuracy’, generally defined as an accuracy of 1kcal
mol−1. The calculated difference between the highest occupied and lowest unoc-
cupied molecular orbitals (HOMO-LUMO gap) is often very much underestimated
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in the LDA. GGA functionals still suffer from the self-interaction error discussed
and still underestimate HOMO-LUMO gaps. In general, DFT approximates both
the exchange and correlation energies whilst Hartree-Fock ignores correlation but
calculates the exchange exactly. Therefore, adding a fraction of the Hartree-Fock
exchange energy to the DFT energy, resulting in so-called hybrid functionals, can
significantly improve upon the calculatedHOMO-LUMOgap compared to theGGA.
However, it is not always clear what fraction of the exact exchange energy should
be added to the functional. It has also been shown that whilst hybrid functionals
may give an initially larger gap for the same system compared to the gap calculated
using a GGA functional, upon increasing the system size this value is shown to
decrease. Therefore there are clearly other effects reducing the gap value and these
are discussed in Chap.5 of this dissertation. In addition to the underestimation of
HOMO-LUMO gaps, another significant problem with regards to the biomolecu-
lar systems described in this dissertation, caused by the self-interaction error, is the
generally poor description of transition states. For the general dissociation of any
molecule into two fragments, such as the transition state calculated in the next chapter,
it has been shown that when one of the fragments has an electron affinity similar
to the ionisation energy of the other fragment, the self-interaction error will cause
each fragment to have a fractional charge at large separation and, as a result, the total
energy is too low [26]. However, despite the faults which have been outlined here,
there is ongoing work to improve upon existing exchange-correlation functionals.
Themethods discussed in this dissertationwill also be applicablewhenmore accurate
linear-scaling exchange-correlation functionals are available that include a greater
proportion of Hartree-Fock exchange.

3.2.2 Basis Sets

At the very start of this chapter, Dirac notation was used to express the Schrödinger
equation. This is a most elegant approach to working with quantum mechanics with-
out needing to specify a representation.However,whenwanting to performelectronic
structure calculations, a representation for the operators and wave functions must be
chosen. This representation can be fixed by specifying the basis set, which is gen-
erally defined as a collection of vectors that spans a space in which a problem is
solved. In the same way that î , ĵ and k̂ defines a cartesian, three-dimensional linear
vector space, within computational software packages the basis set will often refer
to the set of non-orthogonal one-particle functions used to build molecular orbitals.
In general, a wave function ψ can be written as:

ψ =
∑

i

ciφi (3.38)

where, in this deliberately general example, φi could perhaps represent a set of
atomic-like orbitals and ci would be their associated coefficients. The basis sets

http://dx.doi.org/10.1007/978-3-319-19351-9_5
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used in formal quantum mechanics will be complete in that they perfectly represent
any wave function in the space that they span. However, the basis sets chosen to
perform electronic structure calculations must be truncated for practical computation
and thus a wide variety of approximations are used. Ideally basis sets will use a
minimal number of functions, demonstrate systematic convergence upon making
the basis set more complete and not impose any assumed property of the system
onto the calculations. As the purpose of most computational investigations is to find
the equilibrium ionic configuration for a set of atoms, it is also imperative that the
basis set must allow accurate calculation of forces. Most often, molecular orbitals
are built from a linear combination of atomic orbitals where an orbital is defined
as a one-electron function. In the majority of total energy packages available, these
atomic orbitals are represented by atom-centred Gaussian type orbitals (GTOs) in
the form of:

φGTO
abc (x, y, z) = N xa ybzce−ζr2 (3.39)

where N is a normalisation constant, a, b and c control the angular momentum L
= a + b + c and ζ controls the width of the orbital whereby a high ζ is associated
with a tight function and a low ζ gives a diffuse function. Due to the Gaussian
product theorem which makes GTOs relatively easy to compute, they are widely
used amongst computational chemists. A weakness of GTOs is that they produce
less accurate results than Slater type orbitals (STOs) [27], however it takes longer
to compute integrals using STOs. Through a linear combination of GTOs, one can
approximate an STO, often called an “STO-nG” basis, despite it being a combination
of contracted GTOs. An example of one of the simplest, minimal basis sets is STO-
3G where each STO is represented by three GTOs. An asterisk after the G would
indicate that polarisation functions have been added. A second asterisk will be added
if polarisation functions have been applied to the hydrogen atoms. The notation,
introduced by Pople, of 3-21G tells us that three GTOs are used for the core, two
for the first valence orbital and one for the second valence orbital. This is a double-
valence or double-zeta basis set. Triple- and quadruple-zeta basis sets have three
and four basis functions for each atomic orbital, respectively. This number can be
increased as it has been shown that having different sized functions allows the orbital
to adapt according to proximity to other atoms. A disadvantage to atom-centred
orbitals is that as the basis setmoveswith the atoms, so thewave functionswill change
as the atoms move. This gives rise to Pulay forces [28] which must be calculated as
corrections to the Hellmann-Feynman forces, which will be described in Sect. 3.5.1.
Other basis sets which are also used widely by computational chemists include
the correlation-consistent basis sets which can be converged systematically to the
complete basis set limit [29] where in this limit the energy can be extrapolated to, in
principle, yield an exact solution. The notation for these types of basis sets includes
cc-pVTZ to denote a triple-zeta valence set with polarisation functions and ‘aug-’
will be prepended to indicate the use of additional diffuse functions.

A choice of basis set used very widely amongst condensed matter physicists is
plane waves, which are the solution of the Schrödinger equation for free electrons
and have the general form of eiG.r where G is some wavevector. By increasing the
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maximum value of the wavevectors of the plane waves retained in the basis set,
the basis set can systematically be made more complete. The basis set is usually
defined by an energy cutoff where the kinetic energy of an electron with associated
wavevector G is:

Ecutoff = �
2G2

2me
(3.40)

However, large areas of vacuum in a system are computationally expensive when
using a plane-wave basis set as plane waves fill all space. Despite this, a significant
advantage of the approach is that the basis does not change when the atoms move so
there are no associated Pulay forces.

3.2.3 The Pseudopotential Approximation

The atomic wave functions are eigenstates of the atomic Hamiltonian, therefore they
must all be mutually orthogonal. Since the core states are localised in the vicinity
of the nucleus, the valence states must oscillate rapidly in this core region in order
to maintain this orthogonality with the core electrons. This rapid oscillation results
in a large kinetic energy for the valence electrons in the core region, which roughly
cancels the large potential energy due to the strong Coulomb potential [30]. Thus the
valence electrons aremuchmoreweakly bound than the core electrons. In 1934,Hans
G.A. Hellmann therefore replaced these effects by a Zusatzpotential [31], which is
repulsive in the core region and therefore keeps the electrons out of the core (Pauli
repulsion). The potential that originates in the atomic nuclei is far from smooth. In
the simplest case of hydrogen the potential is −1/r , which diverges at the origin.
The 1s wave function does not diverge, but it exhibits a cusp at the origin, and
decays exponentially with distance. For heavier atoms the wave functions associated
with core states are even steeper. Therefore, a plane-wave expansion of the wave
functions in a real system is a difficult task, because the number of plane-wave
components required to represent such steep wave functions is huge. However, it
would be desirable to retain the simplicity of the plane-wave approach. In 1937,
Slater suggested another possible solution to the problem, where the plane-wave
expansion was augmented with the solutions of the atomic problem in spherical
regions around the atoms, and the potential was assumed to be spherically symmetric
inside the spheres, and zero outside, in the augmented plane wave (APW) method
[32]. In order to overcome this shape approximation of the potential, in 1940, Conyers
Herring proposed an alternative method consisting of constructing the valence wave
functions as a linear combination of plane wave and core wave functions [33]. By
choosing appropriately the coefficients of the expansion, this wave function turns
out to be orthogonal to the core states, hence the name of orthogonalised plane
wave (OPW) method. Since the troublesome region is taken care of by the core
orbitals, the part that must be represented by the plane waves is rather smooth, and
a smaller number of plane-wave components is required to reproduce the valence
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states. One can go a step beyond the OPW approach, and eliminate the core states
altogether by replacing their action with an effective potential, or pseudopotential.
This pseudopotential, however, cannot just be anything. It has to be constructed
carefully in order to reproduce accurately the bonding properties of the true potential.

Electrons are indistinguishable and a separation into pure core, pure valence and
mixed core/valence terms for the electronic Hamiltonian is therefore not possible.
Nevertheless, it is convenient to classify the electronic states of an atom into:
(i) core states, which are highly localised and not involved in chemical bonding,
(ii) valence states, which are extended and responsible for chemical bonding, and
(iii) semi-core states, which are localised and polarisable, but generally do not con-
tribute directly to chemical bonding. The most common pseudopotential approach
consists of not allowing the relaxation of core states according to the environment
(frozen core approximation), although some polarisable core approaches have been
proposed. In general, this is a very good approximation that reproduces total atomic
energies within 0.01 eV [34]. Semi-core states are often treated as part of the frozen
core, but when their contribution is important they have to be included in the valence.
The valence states, due to orthogonalisation with respect to the core states of the
same symmetry, show a marked oscillatory behaviour with a number of nodes equal
to n − l − 1, n being the principal quantum number and l the angular momentum.
Nodeless wave functions (l = n − 1) are not oscillatory but, due to the lack of
orthogonalisation, they create strongly bound states that are markedly peaked close
to the nucleus. This is the case of the 1s state in H, the 2p states in C, N, O, and
F and the 3d states in transition metals. When the basis set chosen is that of plane
waves, the computation of Hamiltonian matrix elements requires the Fourier decom-
position of the wave functions. Features like the above are very stringent for plane
waves, because sharp peaks require a very large number of plane waves to achieve
convergence in the expansion, and this translates into a vast amount of computational
resources (the dimension of the matrix to diagonalise becomes very large). Based
on the observations that: (i) core states are not fundamental for the description of
chemical bonding, and (ii) a good description of the valence wave functions inside
the core region is not strictly necessary, there is no lack of crucial information if
the inner solution (inside some cutoff radius) is replaced with a smooth, nodeless
pseudo-wave function, which is not a solution to the original atomic problem. Being
nodeless, it now corresponds to the lowest-lying state of an effective, pseudo-atomic
problem where the true potential has been replaced by a pseudopotential.

There are two essential steps in pseudopotential theory. The first is that the core
electrons are removed from the calculation, and the interaction of the valence elec-
trons with the nucleus plus the core states (including orthogonalisation) is replaced
by an effective, screened potential. The screened potential depends on the angular
momentumof the valence electrons because of the different orthogonality conditions.
For instance, in the C atom, the 2s valence state has to be orthogonal to the 1s core
state, but the 2p valence state does not feel the orthogonality constraint of the 1s state
because they have different angular quantum numbers. Therefore, within the core
region, these two states feel very different potentials from the ionic core. At large
distances the potential is −ZV /r independently of the angular momentum, because
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the ionic core is seen as a point charge of magnitude equal to the valence charge ZV .
For each angular momentum l the pseudopotential should have the valence l-state as
the ground state. The second step is that the full ionic core-electron interaction (often
called ion-electron interaction), which includes the orthogonality of the valencewave
functions to the core states, is replaced by a softer pseudopotential. The solution of
the atomic Schrödinger equation for the pseudopotential is a pseudo-wave function
different from the true wave function. The pseudopotential, however, is constructed
in such a way that its scattering properties and phase shifts are the same as those
of the all-electron potential, although the radial pseudo-wave function has no nodes
inside the core region.

In 1959, Philips and Kleinman [35] showed that one can construct a smooth
valence wave function that is not orthogonalised to the core states, by combining the
core and the true valence wave functions into a pseudo-wave function that satisfies
a modified Schrödinger equation. They then showed that it is possible to construct
a pseudo-Hamiltonian with the same eigenvalues of the original Hamiltonian but a
smoother, nodeless wave function. The associated potential was called a pseudopo-
tential. This pseudopotential acts differently on wave functions of different angular
momentum. When the total pseudopotential acts on the electronic wave function,
projection operators select the different angular components of the wave function,
which are then multiplied by the pseudopotential corresponding to the angular com-
ponent. Next, the contributions of all the angular components are added up to form
the total pseudopotential contribution to the Hamiltonian matrix elements that enter
the Schrödinger equation. Pseudopotentials of this kind are usually called non-local
because they act differently on the various angular components of the wave function
as a consequence of the exchange with the core. However, as the pseudopotential
corresponding to the angular components is a local operator in the radial coordinate,
a better name for this type of expression is semi-local or angular-dependent. If all
the angular components of the pseudopotential are taken to be the same, then the
pseudopotential is said to be local. In principle, local versions can be constructed that
verify the required properties for all angular momenta, but they tend to be quite hard
(many plane-wave components are required), and are difficult to construct. That is
why it is easier and computationallymore effective to use non-local pseudopotentials.

There is an enormous freedom in howpseudopotentials are constructed, the details
of which extend beyond the scope of this dissertation. The problem with empiri-
cal potentials which were determined primarily through fitting experimental energy
bands [36], was that they lacked transferability, namely that a pseudopotential con-
structed for some specific environment can be used for the same atomic species but
in a different environment. The first non-empirical approach to pseudopotentials was
the one devised by Philips and Kleinman. This approach, however, had a severe
problem: the normalised pseudo-wave function had an amplitude different from that
of the all-electron wave function. Outside the core the shapes were the same but
the wave functions were only proportional to each other through a normalisation
factor. This was not acceptable because it led to an incorrect valence charge distri-
bution, and thus to deviations in the bonding properties. It is important that outside
the core region the true and pseudo-wave functions are the same. The construction
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of a pseudopotential is an inverse problem: given a pseudo-wave function that: (i)
beyond some distance decays exactly as the all-electron wave function, and (ii) is an
eigenstate of a pseudo-Hamiltonianwith the same eigenvalue as the all-electronwave
function, the pseudopotential is obtained by inverting the radial Schrödinger equa-
tion for that pseudo-wave function. Its solution is uniquely determined by the value
of the wave function and its derivative at any given point. These two conditions can
be equally realised by specifying the value of the (dimensionless) radial logarithmic
derivative of the wave function, together with a normalisation condition, and this can
be done for all values of angular momentum l. This involves the phase shifts of the
partial waves from scattering theory. Therefore, if the all-electron potential and the
pseudopotential are the same outside some cutoff radius rc, then the all-electron and
pseudo-wave functions are proportional if the corresponding logarithmic derivatives
are the same. When the pseudo-wave function is further required to preserve the
norm inside the cutoff radius this property is called norm-conservation, and it was
first introduced in 1979 by Hamann et al. (HSC) [37].

A key result from HSC was to realise that the norm of the wave function also
appears in a very important identity related to the Friedel sum rule. The norm-
conservation constraint is tightly linked to the concept of transferability through this
sum rule and the expression shows that the first order energy variation of the phase
shift is proportional to the norm of the wave function in the pseudised region. There-
fore, the norm-conservation condition, imposes that, to first-order in the eigenvalue,
the logarithmic derivatives of the all-electron and pseudo-wave functions vary in
the same way. This implies that a small change in the eigenvalue due to changes
in the external potential (the environment) produces only a second-order change in
the logarithmic derivative. Therefore, the condition of matching logarithmic deriv-
atives, which by construction is strictly verified only for the value of the reference
energy used to obtain the wave function, becomes approximately valid in a range
of eigenvalues around the reference. In this way, pseudopotentials derived from
atomic calculations can be exported to other environments. When an atom is part
of a molecule or a solid, its electrons feel the influence of the other atoms (the
so-called molecular or crystal field). This implies that the electronic eigenvalues
are shifted from their atomic values, but the transferability property ensures that
the all-electron and pseudo-wave functions still coincide outside the cutoff radius.
The norm-conservation constraint guarantees that the pseudopotential is useful, not
in every energy range, but at least in environments such that the eigenvalues do
not depart significantly from the eigenvalues used in its construction. For example, a
pseudopotential for H in the H2 molecule may not be useful for hydrogen at very high
pressures because the energy ranges are completely different, but a pseudopotential
for Si constructed with the bulk solid in mind will be useful for the Si surface or for
liquid Si under similar external conditions. The straightforward recipe for improving
transferability is to reduce the cutoff radius, because in this way the pseudo-wave
function becomes closer to the all-electron result. However, the reduction of rc is
limited by the (not strictly necessary) condition of a nodeless pseudo-wave function;
the cutoff radius cannot be made smaller than the position of the outermost node of
the all-electron wave function. The conditions proposed by HSC for the construction
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Fig. 3.1 a Pseudopotentials for the 2s and 2p states of O (solid lines), and the unscreened −ZV /r
Coulomb potential (ZV = 6). b All-electron (solid lines) and pseudo-wave functions (dashed lines)
for the O 2s (negative values) and 2p (positive values) valence states. Figure adapted from Ref.
[34]

of norm-conserving pseudopotentials are that (i) the eigenvalues of the pseudo-wave
functions coincide with those of the all-electron wave functions for a chosen elec-
tronic configuration of the atom; (ii) The pseudo-wave function is nodeless, and it
is identical to the all-electron wave function outside a suitably chosen cutoff radius
rc; (iii) the norm of the true and pseudo-wave functions inside the pseudized region
(r < rc) is the same (the norm-conservation condition); (iv) the logarithmic deriva-
tives of the all-electron and pseudo-wave function agree for r ≥ rc.

To illustrate in an example, Fig. 3.1 shows a norm-conserving pseudopotential for
oxygen, within the PBE approximation to DFT. The pseudopotential has been gener-
ated for the neutral configuration [1s2]2s22p4, where the 1s orbital is a core state and
2s and 2p are in the valence. Figure3.1a shows the actual 2s and 2p components of
an oxygen pseudopotential, together with the unscreened Coulomb potential −6/r .
Notice how the pseudopotentials approach the Coulomb potential and merge with it
at the cutoff radii. Figure3.1b shows the all-electron and pseudo-wave functions for
the two pseudized states, 2s and 2p. The cutoff radii are 0.84 and 0.79 Å, respec-
tively. The pseudo-energies are virtually the same. The total energies are different
because the pseudo-atom does not contain the 1s electrons explicitly. Notice how lit-
tle pseudisation can do for the 2p state, which is already nodeless at the all-electron
level. However, the effect is more important for the 2s state, where pseudization
has eliminated the node, thus making the pseudo-wave function much smoother.
Throughout the calculations within this dissertation, norm-conserving pseudopoten-
tials have been used. Despite the robust methods outlined in this section, practical
limitations fromcomputational resources dictate that even the largest supercomputers
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in the world will only allow a system comprising around 500 atoms to be treated with
conventional DFT. This is of little use to scientists wishing to explore the realms of
biologically relevant systems as a typical biomolecule will contain many more than
500 atoms. One approach toward solving this problem is the focus of the next section.

3.3 Linear-Scaling DFT

In recent years, DFT simulations have become increasingly widespread in the simu-
lation of biological systems at the level of individual atoms and electrons. A limiting
factor in applying conventional first-principles approaches to large systems is the
unfavourable computational requirements which typically increase as the third (or
greater) power of the number of atoms in the system. However, methods to overcome
this computational bottleneck, resulting in approacheswhere the computational effort
increases linearly with the number of atoms, have been under development for two
decades [38] and are still advancing today [39]. Thesemethods provide explicit treat-
ment of the electrons, naturally taking into account the electronic charge transfer and
polarisation, for systems containing many thousands of atoms and are transferable
to any chemical environment. These advances in linear-scaling first-principles tech-
niques now allow system sizes on the order of tens of thousands of atoms to be
routinely accessed [40]. Following this phenomenon of larger systems becoming
accessible, a natural progression has ultimately been to apply density-functional
methods to systems of biological interest. The Fritz Haber Institute ab initio mole-
cular simulations (fhi-aims) package [41] implements an all-electron/full-potential
treatment with computational expense that scales linearly with the size of the system.
fhi-aims has, amongst other things, been applied to folding processes in helices and
polypeptides with a recently developed DFT+VdW approach [42]. The TeraChem
package [43] has recently been used to optimise the structures of more than 50
polypeptides of sizes ranging up to 590 atoms. Large-scale real-space DFT calcula-
tions on the electron states of silicon nanowires have been reported [44]. System sizes
of 107,292 atoms were treated during the evaluation phase of the k computer using
442,368 cores and the rsdft code [45]. A report in 2000 demonstrated linear-scaling
DFT calculations on a dry DNAmodel comprising 715 atoms using the siesta code
[46]. More recent work used the conquest code to perform calculations on a B-
DNA decamer system with explicit water molecules and counter ions resulting in a
total system size of 3439 atoms [47]. The same code has also been used to calculate
total energies and forces of a hydrated ten-mer of DNA using DZP basis sets and
comparison to results from the amber force field were made [48]. Linear-scaling
methods have also been applied to solvent/solute interaction energy studies of drug
molecules [49]. Work implementing low-order-scaling approaches applied to DNA
has also been reported [50]. The frozen molecular orbital (FMO) approach has been
shown to be efficient for biomolecular systemswithmany published results [51]. One
of the largest known systems investigated came from FMO studies of the active sites
of influenza A viral haemaglutinin that also used a polarisable continuum model and
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Fig. 3.2 aOne delocalized orbitalψi (r) from a conventionalDFT calculationwith theCastep code
on a peptide [67]. b Three optimised NGWFs φα(r), φβ(r) and φγ(r) from a onetep calculation
on the same peptide [53]

was applied to a 24,000 atom protein [52]. The onetep code [53], which has been
used for the majority of the calculations presented in this dissertation, has previously
been used by others to perform geometry optimisations characterising binding ener-
getics of small molecules to the metalloprotein myoglobin [54] and also to measure
binding of small molecules to T4 lysozyme in solution [55]. There are now a variety
of other codes with linear-scaling capabilities [56–62]. Recent developments in the
simulation of optical spectroscopy [63], dynamical mean field theory with applica-
tions to human respiration [64] and methods to aid interpretation of the electronic
structure [65, 66] also broaden the scope of biomolecular simulations. This section
outlines the ideas behind density-functional theory with computational time scaling
linearly as the number of atoms in the system is increased. Amore detailed discussion
of the current state of linear-scaling methods is available elsewhere [39].

In order to see the origin of the cubic scaling bottleneck hindering conventional
density functional approaches, one must consider Eq. (3.21). The solutions to (3.21)
extend over the entire system (see Fig. 3.2) such that the resulting overlap integral
requires a computational effort that scales linearly with the number of atoms in the
system. However, the number of orbital pairs and the associated number of con-
straints is proportional to the square of the number of atoms in the system. Therefore
the overall computational effort scales as N 3. The Hohenberg-Kohn theorems, dis-
cussed in Sect. 3.2, rely on accurate calculation of the electron density in order to
provide important information regarding a system. However, if one is interested in
generating a linear scaling method, it can be more helpful to not work in terms of
the electron density. There are a handful of ways one can go about this, including
the Fermi operator expansion [68], divide-and-conquer [69] and orbital minimisa-
tion [70] methods. The particular approach that this dissertation will focus on, as is
implemented within the onetep code that is discussed later, instead works in terms
of the density matrix:

ρ(r, r′) =
∑

n

fnψn(r)ψ∗(r′) (3.41)
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where fn is the occupancy and the Kohn-Sham orbitals are ψn(r) and ψn(r′). The
density matrix is idempotent, such that:

ρ2(r, r′) =
∫

dr′′ρ(r, r′)ρ(r′′, r′) = ρ(r, r′) (3.42)

which requires the orthonormality of the orbitals from Eq. (3.21) and the Aufbau
principle of singly occupying all states up to the chemical potential, which itself fol-
lows from the Pauli exclusion principle. Therefore this ensures the single occupancy
of all states up to the chemical potential. The density matrix can then be seen as the
position representation of the projection operator onto the space of occupied states ρ̂.
The charge density n(r) can now be found from the diagonal elements of the density
matrix:

n(r) = 2ρ(r, r) (3.43)

and the total energy of the system can be defined by:

E = 2Tr(ρ̂Ĥ) (3.44)

where Ĥ is the Hamiltonian from Eq. (3.21), whose solutions can be found by min-
imising the energy with respect to the density matrix, subject to idempotency and
normalisation constraints:

2
∫

drρ(r, r) = Ne (3.45)

ensuring the density-matrix corresponds to a system of Ne electrons. However,
despite this density-matrix reformulation of Kohn-Sham DFT, there still remains
the fact that the number of occupied states is directly proportional to N , with each
state extending over the entirety of the system so the amount of information in
the resultant density-matrix will scale quadratically, as will any associated density-
matrix manipulation. If a linear-scaling method is to be found, the nearsightedness
of quantum mechanics will need to be exploited. It is Walter Kohn’s principle of
nearsightedness [71, 72] that tells us the electronic structure of quantum many-body
systems is localised. Kohn defines a local volume described in terms of a typical de
Broglie wavelength associated with the ground state wave function of the system.
Any changes to distant parts of the system (far from all points in the local volume)
have a negligible effect on the electronic structure in the local volume. Combined
with the consequence of quantum interference effects, the density matrix for systems
with a finite band gap is short ranged:

lim
|r−r′|→∞

ρ(r, r′) ∼ exp
(−γ|r − r′|) → 0 (3.46)

where the decay constant γ depends on the energy gap between the highest occupied
and lowest unoccupied molecular orbitals (HOMO-LUMO gap), a quantity which
is independent of system size and which is the focus of Chap. 5. Therefore the

http://dx.doi.org/10.1007/978-3-319-19351-9_5
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significant information contained in the density matrix scales linearly with the size
of the system. The principles discussed in this section are implemented practically
in the onetep code which is the focus of discussion in the next section.

3.4 The onetep Code

onetep [53] is a linear-scaling DFT package designed for use on parallel computers
[73] that uniquely combines near-complete basis set accuracy with a computational
cost that scales linearly with the number of atoms. This allows an accurate QM
description of systems of thousands of atoms [40], including a range of applications
to biomolecular systems [54, 74–76]. Linear scaling is achieved with onetep by
reformulating conventional Kohn-Sham DFT [9, 11] in order to exploit the “near-
sightedness” of the single-particle density matrix in non-metallic systems [71, 72].
In terms of Kohn-Sham orbitals the density matrix is expressed as in Eq. (3.41).
However, as the search for the ground state in terms of the density matrix can not
be made in terms of the original six-dimensional object, the most common approach
is to assume that the density matrix is separable and to work in terms of localised
orbitals. Within onetep, the density matrix is represented as:

ρ(r, r′) =
∑

αβ

φα(r)K αβφ∗
β(r′) (3.47)

where φα(r) are non-orthogonal generalised Wannier functions (NGWFs) [77] that
are localized in real space. In practice, linear scaling arises from enforcing strict
localisation of the NGWFs onto atom-centred regions of fixed radii {rα}. The density
kernel (K αβ) is a representation of fn in the duals of the NGWFs and is required
to be sparse. This is achieved by discarding elements corresponding to NGWFs
centred further apart than some user-defined cutoff rK . However, a consequence of
the non-orthogonality of the NGWFs, combined with the fact that the density kernel
is related to the duals of the NGWFs and not the NGWFs themselves, the kernel
cutoff rK is not simply rα + rβ . Optimising the NGWFs in situ allows for a minimal
number of NGWFs to be used whilst maintaining plane-wave accuracy. The basis
set underlying the NGWFs consists of periodic cardinal sine (psinc) functions [78]
that are related to plane waves by a unitary transformation. The use of a plane-
wave basis allows for an unbiased approach to DFT calculations with systematically
improvable accuracy through varying a single parameter similar to the energy cutoff
in conventional plane-wave DFT packages. The NGWFs are then those functions,
when traced with their corresponding optimised density kernel, which reproduce the
ground-state density-matrix, whence the ground-state energy [79]:

E0 = min
n

E[n] = min
ρ̂

E[ρ̂]ρ̂=ρ̂2 = min
K,φ

E[K,φ]K SK (3.48)
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The task is to then extremise the total energy with respect to idempotent density
matrices. This is achieved in practice via two nested conjugate gradient variational
minimisations.Within the inner loop, for some fixed NGWF expansion, the energy is
minimisedwith respect to the density kernel elements. Then in the outer loop, the total
energy is minimised with respect to the coefficients of the NGWF psinc expansion
whilst the density kernel remains fixed. In order to impose the idempotency constraint
from Eq. (3.42), a combination of a penalty functional method [80] and the approach
of Li et al. [81] (and independently of Daw [82]), based on McWeeny’s purification
transformation [83], is used. The purification transformation is defined in terms of
some auxiliary matrix σ(r, r′):

ρ(r, r′) = 3σ2(r, r′) − 2σ3(r, r′) (3.49)

Multiple iterations of this transformation will result in any eigenvalues around zero
vanishing quadratically while the eigenvalues close to one will converge to that
value. In the case of ρ(r, r′), these eigenvalues are the occupation numbers fn .
Therefore, expressing ρ(r, r′) as such, combined with optimising σ, will apply the
constraint of idempotency, subject to the occupation numbers remaining in a sensible
interval, something that is expected if a system is physically meaningful. General
linear-scaling approaches implementing a fixed set of local orbitals will usually use
atomic-type functions. Typically, these will be initiated as a solution to the Kohn-
Sham equation for atoms inside spherical confinement potentials, obtained using
an atom-solver approach as described in the next section. Using a minimal set of
orbitals, in order to minimise calculation time, often leads to inaccuracies. This issue
can be resolved by simply adding to the set of orbitals used, creating split valence,
or multiple-zeta, sets where often additional polarisation functions are included to
treat the atomic response to an applied E field. A different approach, the one which
is used in onetep, optimises the orbitals within the environment of the system under
calculation, meaning one no longer has to increase the orbital set to ensure transfer-
ability. In addition, following this in situ optimisation, basis set superposition error
corrections are not needed [84].

3.4.1 The Periodic Cardinal Sine Function Basis Set

In order for the NGWFs to be successfully optimised, they must be expanded in
terms of a primitive set of functions. This is achieved in onetep by using a basis set
of periodic cardinal sine (psinc) functions [77, 78]. There is one function centred on
each point of a mesh commensurate with the simulation cell and a representation of
a single basis function can be seen in Fig. 3.3a. Through varying the fineness of the
mesh used for the psincs, the quality of the basis set can be controlled in a manner
corresponding to the energy cutoff used to control plane-wave basis sets. These psincs
are related to plane waves by a unitary transformation and so give the advantages of
both the localised-orbital type and the plane-wave type of basis sets. This relation
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Fig. 3.3 a A psinc basis function used to expand the NGWFs in ONETEP [85]. b An illustration
of the ‘FFT box’ technique used in onetep [85]

also allows the efficient calculation of the kinetic energy through the use of fast
Fourier transforms (FFTs) [86]. FFTs performed over the entirety of the simulation
cell would scale as O(M log M) for each NGWF, where M is the number of grid
points. In order to achieve linear-scaling behaviour, the ‘FFT box’ technique is used
[87, 88]. In this scheme, the transforms are performed within a box large enough to
enclose all overlapping NGWFs and an illustration of this approach can be seen in
Fig. 3.3b. The number of grid points in the box is fixed throughout the calculation
and depends only on the spacing of the psinc grid and the maximum number of
overlapping NGWFs. Therefore, linear-scaling behaviour can be maintained.

For an atom-centred basis set, care must be taken when selecting the basis func-
tions for the system being studied in order to ensure computational accuracy and
efficiency. Whilst the in situ NGWF optimisation in onetep seeks to ameliorate
these problems surrounding careful basis set selection, a sensible choice of initial
functions will nevertheless speed up the optimisation process. In order to provide
a sensible estimate of the form of the initial NGWFs, resulting in an initial start-
ing wave function closer to the ground state of the system, the atom solver can be
used that performs a Kohn-Sham DFT calculation on a pseudoatom in a spherical
confinement potential [89]. NGWFs are then initialised as pseudoatomic orbitals,
which are obtained through solving the Kohn-Sham equation for a free atom, where
the Hamiltonian from Eq. (3.20) can be decomposed into kinetic, local potential and
non-local potential contributions:

Ĥ = −1

2
∇2 + Vloc(r) + V̂nl (3.50)

where Vloc(r) is the local effective potential and and V̂nl is the nonlocal part of the
pseudopotential. The local potential effective potential Vloc(r) is defined as:

Vloc(r) = V PS
loc (r) + VH[n(r)] + Vxc[n(r)] + Vconf(r) (3.51)
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where V PS
loc (r) is the local part of the pseudopotential, Vxc[n(r)] has the same form

as (3.37) and VH[n(r)] is the Hartree potential for a spherical charge distribution.
Vconf(r) is a confining potential of the form [41]:

Vconf(r) = S exp

[ −wl

r − Rc + wl

]
(r − Rc)

−1 (3.52)

where the value of this potential is zero for small to medium distances from the
atomic centre but it increases rapidly when close to a predetermined confinement
radius Rc. This is used to ensure a smooth decay of the atomic orbitals outside Rc.
S is the maximum height of the confining potential at r = Rc, and wl is the width
of the region over which it is applied. Throughout the calculations in this disserta-
tion, values of S = 100 Ha and wl = 3.0 a0 are implemented for all l-channels, or
angularmomenta, used. As the atomic eigenstates are solved for the native pseudopo-
tential and exchange-correlation functional of the system being studied, they are a
much better starting choice than atom-centred basis sets commonly used in quantum
chemistry such as all-electron GTOs.

It is important to note at this stage that, as with all grid-based methods, if the
preparation of the calculation is not carefully checked, this approach can suffer
from so-called space rippling problems whereby the homogeneity of space is lost
by the discretisation. This can result in spurious forces appearing. This effect is
most apparent when considering the oscillation of the total energy when a single
atom is moved across the simulation box, demonstrating the so-called ‘eggbox’
effect [90–92]. The problem will diminish for grids that are fine enough and, hence,
convergence with respect to the grid spacing, to an acceptable level, must be obtained
for all calculations [93, 94]. For all calculations presented in this dissertation,NGWFs
were initialised as atomic orbitals obtained using the atom solver approach described
in this section to solve the Kohn-Sham equation for atoms in spherical confinement
potentials, with a 1s configuration for hydrogen, a 2s2p configuration for carbon,
nitrogen andoxygen and a3s3p configuration for sulphur,when the relevant chemical
elements are required.

3.4.2 Cutoff Coulomb Interactions

The plane-wave pseudopotential method was developed with crystalline matter in
mind, in which periodic boundary conditions (PBC) are required for the calculations.
As the Hartree interaction is diagonal in reciprocal space, FFTs are used to calculate
the Hartree potential and associated energy. When calculating the properties of bulk
solids the influence of periodic images is desirable as it models the true extended
bulk system. However, when simulating isolated, finite systems within PBCs the
supercell approximation [95–97] must be used. This method replaces a truly isolated
system with periodic images with vacuum added around the system to minimise the
influence of the periodic replicas on one another. A representation of this approach
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Fig. 3.4 a Schematic representation of the supercell approach for treating isolated molecules with
periodic boundary conditions (PBCs). The molecule is embedded in a repeated unit supercell with
boundaries demarcated by dashed lines. b Schematic representation of the padded cell in the cutoff
Coulomb approach. Figure adapted from Ref. [98]

can be seen in Fig. 3.4a. This approach has been shown to introduce so-called finite
size effects whereby the calculated total energy of the system, along with other
properties, varies with the size of the supercell [99]. In addition, with particularly
large systems there is scope for significant long-range redistribution of the charge
due to effects of the periodic images. In order to reach the truly isolated, non-periodic
limit, one can simply increase the size of the cell, but this can result in a prohibitively
large size for systems such as biomolecules. Even though, in principle, the speed of a
onetep calculation is independent of cell size, provided enough CPUs are available,
in practice, memory requirements limit the cell size. In addition, the decay of the
interaction of periodic replicas of a monopole charge goes as 1

r so, in practice, the
infinite limit is impossible to reach for systems with a non-zero charge. One solution
to this problem is to truncate the Coulomb interaction in real space [100, 101] and
this approach has been implemented in the onetep code [102] and the octopus
code [103, 104]. Using a modified form of the Coulomb interaction, the usual FFT
approach can still be used along with a periodic supercell, but the Coulomb potential
is confined within the primary simulation cell. Essentially, the periodic, background-
neutralised Coulomb potential is replaced with a bare counterpart. This replacement
interaction is truncated to ensure no part of the simulation cell feels the potential from
any of the neighbouring periodic images. It is desirable to maintain the simplicity of
a diagonal interaction in reciprocal space. In order to achieve this whilst avoiding the
influence of periodic images, the following, ‘cutoff’, form for the Coulomb potential
should be used:

VCC(r − r′) =
{

1
|r−r′| , r − r′ ∈ R1

0, r − r′ �∈ R1
(3.53)
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where R1 is defined as a region of specific shape chosen such that whenever it is
centred on some point r, where the Hartree potential is required, it encloses all r′
for which n(r + r′) �= 0. The region may be anywhere inside the simulation cell
or it may just comprise any amount of non-zero density. Calculation of the Hartree
potential using the cutoff Coulomb potential in onetep is performed on a unit cell
padded with vacuum such that, for a spherical cutoff region R1, the contribution
of the electrostatic potential from a periodic image never falls within the cutoff
Coulomb radius Rcc of the unit cell for all points where the Hartree potential is
required. The padded cell can be seen in Fig. 3.4b. Lmol is the length scale of the
isolated molecule, defined as the largest distance between the edges of the any two
NGWFs on the molecule. Lcell and L pad are the side lengths of the (cubic) unit
and padded cells, respectively. The sphere, of radius Rcc, must encapsulate all non-
zero density in the unit cell of the molecule for all points where VH(r) is required.
By setting L pad ≥ Lmol + Rcc one can ensure that densities from periodic images
never intersect the density within the unit cell. Using this form of the potential has
consequences. The corresponding cutoff form of the Coulomb interaction must also
be used as a replacement for the long-ranged Coulombic tails of the ion cores in the
local pseudopotential form. In a similar vein, when calculating the forces acting on
the ion cores, the periodic Coulomb and Ewald terms are replaced with their cutoff
Coulomb forms. The spherical variant of the cutoff Coulomb approach has been
used throughout the calculations in this dissertation to eliminate all interactions of
the molecules with their periodic images.

3.4.3 Implicit Solvation

The accurate simulation of the biochemical processes that take place in proteins
and enzymes requires careful treatment of solvation effects. Simply including more
water atoms in a simulation results in very expensive calculations requiring exten-
sive averaging over the solvent degrees of freedom. Only a small proportion of the
solvent molecules are involved chemically; it is the long range electrostatic effects
of the solvent that are most significant. In the implicit solvent approach implemented
in onetep it is only the atomic details of the solute that are kept. The solute is
then placed inside a suitably defined cavity and the solvent environment is repre-
sented by an unstructured dielectric continuum outside of this cavity. A plethora
of approaches for treating solvation of molecules is available, a review of which is
available elsewhere [105]. Many of the models proposed in the literature are based
on the self-consistent reaction field (SCRF) mechanism whereby the effect of the
electric field due to the dielectric, polarised by the solute, is included within the
Hamiltonian self-consistently. Notable variants of the SCRF-type model which are
widely used are the polarisable continuum model (PCM) [106] and the conductor-
like screening model (COSMO) [107]. Within the many models proposed the shape
of the cavity containing the solute has varied.More recent proposals have constructed
cavities based on overlapping atomic spheres of varying radii, requiring numerous
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parameters. Another such example of heavy parameterisation is the SMD model
[108], founded in the integral equation formalism of the PCM approach [109]. In
this particular solvation model, the ‘D’ stands for density, denoting the full solute
electron density is used without defining partial charges.

In contrast to this, a recent proposal defines the dielectric as a functional of the
electronic density of the solute [110]. This was then further developed to include
the calculation of the cavitation energy, defining it in terms of the quantum surface
of the solute [111]. In other SCRF-type models the solute cavity has a discontinu-
ous boundary. In this formulation a smooth transition of the relative permittivity is
defined by:

ε[n(r)] = 1 + ε∞ − 1

2

(
1 + 1 − (n(r)/n0)

2β

1 + (n(r)/n0)2β

)
(3.54)

where n(r) is the electronic density of the solute, ε∞ is the bulk permittivity, β is
a parameter controlling the transition of ε[r] from unity to ε∞ and n0 is the value
of the density for which the permittivity drops to half that of the bulk. However, the
original formulation did not include dispersion-repulsion effects and also required
an a posteriori correction to the energy in vacuum obtained in periodic boundary
conditions in order to approximate open boundary conditions. These shortcomings
are overcome by Dziedzic et al. who include dispersion interactions with the solvent,
using appropriate boundary conditions and redetermining the two parameters in the
dielectric functional [112, 113]. Another issue with the original formulation is that
as the dielectric cavity responds self-consistently to changes in the electronic den-
sity the functional derivative of the electrostatic energy now introduces a numerical
instability. Dziedzic et al. circumvent this instability without loss of accuracy by
fixing the dielectric cavity. This is achieved by first solving the homogenous Poisson
equation (HPE) for the system in vacuum:

∇2φHPE(r) = −4πρtot(r) (3.55)

in openboundary conditions,where, in principle, onewould set upDirichlet boundary
conditions, of the form:

φvac
BC(r) =

∫

�

ntot(r′)
|r − r′|dr′ ∀ r ∈ ∂� (3.56)

over the simulation cell (�) on the faces of the simulation cell (∂�). However, in
practice, in order to reduce the computational cost, a coarse-grained version of the
electron density (nCG

tot ) is used. This density is constructed as a set of NCG point
charges corresponding to a cubic block of the simulation cell. The magnitude of
each point charge is the sum of the charges on the grid points belonging to the block
and the charge is positioned at Rl , the centre of charge of the block. The integral in
Eq. (3.56) can now be replaced by a sum over this small number of point charges, so
the potential on the faces of the cell is approximated as:
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φvac
BC(r) ≈

NCG∑

l

nCG
tot (Rl)

|r − Rl | ∀ r ∈ ∂� (3.57)

The electronic density is represented by n(r) and ntot(r) is the total density due to
the electrons and nuclei (or rather, the ionic cores in the case where pseudopotentials
are used). The converged electronic density from vacuum is then used to generate
the density-dependent dielectric cavity in solution, obtained from direct solution of
the inhomogeneous Poisson equation in real space (the equation is homogeneous in
vacuum and inhomogeneous in solution), again under open boundary conditions:

∇ · (
ε[n(r)]∇φ(r)

) = −4πntot(r) (3.58)

However, in solution it is Eq. (3.58) that needs to be solved but the open boundary
conditions can no longer be obtained from Eq. (3.57). In this instance, the form for
the potential is:

φsol
BC(r) ≈ 1

ε∞

NCG∑

l

nCG
tot (Rl)

|r − Rl | ∀ r ∈ ∂� (3.59)

where the dielectric permittivity is assumed to be homogeneous and to have the
bulk value of ε∞ everywhere. By constructing the dielectric cavity by application of
Eq. (3.58) to the converged electronic density of the solute obtained from the vacuum
calculation, and keeping the cavity fixed throughout the calculation in solvent, the
numerical instability is avoided and the associated reduction in accuracy is insignif-
icant. The implicit solvent approach outlined by Dziedzic et al. is implemented in
onetep. In short, when using this approach, through the use of a smeared-ion formal-
ism the molecular Hartree energy is obtained not in reciprocal space, like standard
onetep, but rather by solving the Poisson equation in real space, as described. To
briefly discuss the practicalities of the calculations, the results are achieved via the use
of a multigrid approach detailed elsewhere [55, 112]. Within all implicit calculations
presented in this dissertation, the ion smearing width is 0.8 a0 and the values of the
solvation parameter β and electronic density threshold n0 were 1.3 and 3.5 × 10−4

a.u. respectively, as proposed in Ref. [114]. The relative dielectric permittivity of the
solvent was set to 80.0 for all implicit solvent calculations. A limitation of multigrid
solvers is that every dimension of the grid used in the solver must be a magic number,
defined to be of the form 32k + 1, with allowed sizes of 33, 65, 97, 129, 161, 193,
225 and so on. Therefore, there is a certain granularity to the allowed grid sizes for
the solver. In onetep a fine grid is used in solvation with even dimensions, and thus
never magic. To resolve this difficulty, only the subset of the fine grid that is obtained
by rounding its dimensions down to the nearest magic number is used in solvation
calculations. For a calculation with a psinc grid spacing 0.5, and a cubic cell 42.5 a0
in size, this will yield a fine grid that is 170 × 170 × 170. This value of 170 will be
rounded down to the nearest magic number, 161, and only the lower portion of the
fine grid, 161 × 161 × 161 in size, will be passed to the multigrid. It is then up to
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the user to ensure that no electron density is contained within the unused margin of
162–170. If any NGWFs extend beyond that portion then there will be errors intro-
duced to the calculations. As a rule of thumb, one should have at least about 10 a0 of
vacuum/solvent around the molecule’s NGWFs (not atomic positions) on each side
of the simulation cell but should also be mindful of minimising the margin, so that as
little memory as possible is wasted, as the memory requirement of the solver grows
cubically with the grid size.

3.4.4 Calculating the Local/Partial Density of States

The density of states (DoS) is defined as the measure of how many states or, in an
electronic structure calculation, howmany eigenstates there are at a particular energy
or specifically in an energy window. The DoS can be used to analyse the electronic
structure of a system and can often be used to compare with experimental techniques
such as scanning tunnelling microscopy. In order to provide the required eigenvalues
and eigenvectors, the problem to be solved is the generalised eigenproblem:

∑

β

Hαβ Mβ
n = εn

∑

β

Sαβ Mβ
n (3.60)

where Mβ
n is a matrix describing the eigenvectors, taking the form of:

|ψn〉 =
∑

β

Mβ
n |φβ〉 (3.61)

From the resulting eigenvalues {εn} and eigenvectors Mβ
n the total density of states

n(E) can be obtained:
n(E) =

∑

n

δ(E − εn) (3.62)

where, in practice, the delta function is often replacedwith someGaussian broadening
function of user-specified width, typically on the order of 0.1 eV. The physical justi-
fication for this lies in the fact that thermal fluctuations will broaden energy levels in
a system. The total DoS of a systemmay not be particularly useful when considering
a system with inherently local features such as surfaces, defects or reaction centres.
This quantity is even less useful in large-scale systems studied in this dissertation. In
such scenarios it would be more informative to enquire as to what the DoS associated
with a particular atom or a certain group of atoms is equal to. Local density of states
(LDoS) calculations can provide some of the most valuable sources of information
required to interpret and understand electronic structure calculations. The LDoS
gives a description that encompasses both the spatial and the energetic distribution
of the single-particle eigenstates, simultaneously. By performing a diagonalisation
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of the Hamiltonian matrix in the basis of the NGWFs, the LDoS decomposition is
achieved. This is performed in the local-orbital framework of onetep after NGWF
and density kernel convergence has been reached. This procedure has a cubic scaling
computational cost associated with it, but also has a low prefactor due to the small
NGWF basis. In order to calculate the local density of states for a given region, each
eigenstate must be projected onto the local orbitals contained within that region.
What is obtained is a series of functions for each of the chosen regions, which may
be the NGWFs of a single atom, or those of a group of atom types. These may be
NGWFs of a single atom, or perhaps a group of atom types. Examples of the LDoS
capabilities in onetep can be found in the literature [115, 116] and also in Chap.5
of this dissertation.

3.4.5 Empirical Dispersion Corrections

Traditional DFT, with commonly used exchange-correlation density functionals,
provides an incomplete description of the dispersion interactions required for an
accurate description of protein complexes and enzymes, which would be captured
by a ‘perfect’ functional. The DFT energy can be corrected for dispersion by
modifying it as such:

EDFT+D = EDFT + Edisp (3.63)

where the dispersion energy correction for N atoms is given by:

Edisp(ri j ) = −s6
∑

i j,i> j

C6,i j

r6i j

fdamp(ri j ) (3.64)

where s6 is a global scaling factor, typically used to adjust the correction to the
repulsive behaviour of the chosen density functional [117]. C6,i j is a dispersion
coefficient for atom pair i j . fdamp(ri j ) is a damping function that is equal to unity
at large separations (ri j ) and 0 at small distances [118, 119]. This damping function
is required because electronic structure calculations provide an adequate descrip-
tion of the short-ranged attractions, therefore the empirical correction will become
superfluous at small distances. If a damping function is not applied to the dispersion
term then the total energy will be distorted, due to the resulting significant artificial
strengthening of every covalent bond. All calculations presented in this dissertation
use the form of the damping function due to Elstner et al. [120] which takes the
form of:

f Elstnerdamp (ri j ) =
(
1 − exp

[
−cdamp

ri j

r0,i j

]7)4

(3.65)

where cdamp is the damping constant and r0,i j is a quantity determined by the van der
Waals radii of the atomic pair i and j . In order to improve the description of enzyme

http://dx.doi.org/10.1007/978-3-319-19351-9_5


3.4 The onetep Code 53

systems treated using large scale DFT with onetep, dispersion correction schemes
have been implemented within the code [119]. Reference [119] optimised the C6,i j

coefficients, the r0,i j and the cdamp coefficients against a benchmark set of complexes
with dispersion interactions where the binding energies are known for high accuracy.
This optimisation was achieved by adjusting the parameters in Eq. (3.64) in order to
minimise the difference between the value of the dispersion energy and the error in
the binding energy for each complex. The result of the work presented in Ref. [119]
is that onetep now has optimised parameters to describe dispersion interactions in
four types of damping functions from the literature which can be used with up to six
different density functionals present in the code.

3.4.6 Electrostatic Embedding and the QM/EE Approach

Electrostatic embedding significantly reduces the computational costs associated
with large-scale DFT calculations. Within the quantum mechanics/electrostatic
embedding (QM/EE) approach implemented in onetep, a portion of the total system
is represented in terms of highly localised classical charge distributions [121]. By
electrostatically coupling the quantum systemwith classical charge distributions, the
effects of the environment in which the quantum system is embedded are accurately
represented. The energy of the total embedded system is defined as:

EQM/EE = EQM + Eint + EEE (3.66)

where EQM is the electronic energy of the quantum system that has its associated
charge density and wave functions polarised by the potential due to the embedded
charges. The interaction energy between the electrons and nuclei of the quantum
system and the embedded charges (Eint) is represented as:

Eint =
Nat∑

J

Nemb∑

a

Z J

∫
qa(r − Ra)

|r − RJ | dr −
Nemb∑

a

∫ ∫
qa(r − Ra)n(r′)

|r − r′| drdr′ (3.67)

for an environment of Nemb atomistic charge distributions qa(r − Ra) localised
around the point Ra and evaluated at position r. The first term on the right hand
side of Eq. (3.67) represents the Coulomb interaction energy between Nat nuclei of
atomic number Z J and the second term represents the Coulomb interaction energy
between the charge density n(r) and the embedded charges. The energy of interaction
between the embedding charges, EEE, is represented as:

Nemb∑

a,b>a

∫ ∫
qa(r − Ra)qb(r′ − Rb)

|r − r′| drdr′ (3.68)
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Within DFT calculations, the embedded charges are present throughout the QM
calculation via an SCF approach and the resulting charge density is polarised by
the classical charge distribution. In order for self-consistent embedding to occur, the
Kohn-ShamHamiltonian previously defined in Eq. (3.21) requires an additional term
to describe the potential each electron will experience from the embedded charges:

ĤKS/EE = T̂ + V̂H + V̂xc + V̂ext + V̂emb (3.69)

where the potential due to the embedded charges, V̂emb, is represented by:

V̂emb(r) =
Nemb∑

a

∫
qa(r′ − Ra)

|r − r′| dr′ (3.70)

Throughout this dissertation the tip3p model [122] for the charge distribution of
water has been used where q(O) = −0.834e and q(H) = 0.417e.

3.4.7 Natural Bond Orbital Analysis

NBO analysis provides a chemical picture of bonding in terms of localised Lewis-
type bond and lone pair orbitals. Such an analysis is helpful as state-of-the-art
first-principles electronic structure calculations, whilst able to provide an accurate
description of the system under study in terms of the total electron density, often do
not provide a very good description of the qualitative chemical information available.
onetep has been interfaced with the NBO 5 analysis program [123] in order to pro-
vide chemical insights into subregions of large systems by studying effects such as
electronic delocalisation [124]. An example of this type of analysis for methylamine,
showing the expected double occupancy of Lewis-type bonding orbitals and vacancy
of their antibonding counterparts, can be seen in Fig. 3.5. This approach works by
transforming optimised NGWFs from onetep into atom-centred, orthogonal natural

Fig. 3.5 Examples of NBOs representing the a C–N σ bond, b C–N σ∗ antibond and the nitrogen
n lone pair of methylamine, obtained in onetep from the final optimised NGWFs. NBOs have been
normalized to unity and plotted with an isosurface value of ±0.05 a.u. (red is positive and blue is
negative). Figure adapted from Ref. [124]
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atomic orbitals (NAOs) [125], then into natural hybrid orbitals (NHOs) [126]. NHOs
are the individual atom-centred hybrids that then constitute a two-centred natural
bond orbital (NBO). NBO analysis can be performed within a localised region (such
as an enzyme active site) in such a way as to ensure the results are in fact identical
to a calculation on the entire system.

One of the most interesting and biologically relevant effects that can be studied
with this combined approach is electronic delocalisation. Delocalised charge transfer
represents a deviation from the ideal Lewis description in the NBO formalism. The
variational energetic lowering due to charge transfer from bonding to anti-bonding
NBOs [127] can be estimated through the use of second-order perturbation theory
[128–130]. In the instance of a σi → σ∗

j donor-acceptor interaction, the stabilising
effects can be estimated by inspecting the elements of the first nonzero energetic
correction due to off-diagonal couplings:

�E (2)
i→ j∗ =

∑

j �=i

fi
〈σi |Ĥ |σ∗

j 〉2
ε j∗ − εi

(3.71)

where εi = 〈σi |Ĥ |σi 〉 and ε j∗ = 〈σ∗
j |Ĥ |σ∗

j 〉 are the orbital energies of the donor

and acceptor NBOs, respectively. These �E (2) values can be thought of as an inter-
molecular analogue of the stabilising intramolecular donation of electron density in
hyperconjugation [131, 132]. An example is the n → σ∗ secondary hyperconjuga-
tion interaction of a hydrogen bond involving intermolecular delocalisation (charge
transfer) between a lone pair donor n and an antibond acceptor σ∗ of an adjacent
molecule. It has been shown that such interactions are prevalent within biological
systems, acting to stabilise protein and nucleic acid structures and also regulating
their interactions with their environment [128, 129]. It has also been shown that
the energetic lowering due to charge transfer that is calculated by second-order per-
turbation theory is correlated with the strengths of hydrogen bonds [130]. Thus
the framework gives a means to qualitatively assess hydrogen-bond strength from
a single large-scale DFT calculation. In Chap.6 of this dissertation, an investiga-
tion of the interactions within an enzyme-substrate complex, using the natural bond
orbital (NBO) analysis approach outlined here, has been performed, detailing the
interactions between lone pair and antibonding orbitals between the substrate and
active-site residues. By inspecting the changes in �E (2) energies at the stationary
points in an enzyme-catalysed reaction, the stabilisation effects on the TS arising
from donor-acceptor interactions between the substrate and active-site residues can
be estimated. NBOs are ultimately constructed from natural atomic orbitals (NAOs)
[125] and these form the basis of natural population analysis (NPA), a widely used
method for assigning atomic partial charges. These NPA charges are shown to be
less basis set dependent than the often used Mulliken charges.

http://dx.doi.org/10.1007/978-3-319-19351-9_6
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3.4.8 Density Derived Electrostatic and Chemical
Method for Computing Net Atomic Charges

It has been shown in this dissertation that, by virtue of the Hohenberg-Kohn theorems
and Kohn-Sham ansatz, the ground state electronic density is sufficient to derive all
the information about a system. However, the electron density, by itself, is often not
very useful for understanding chemical reactions and it can be conceptually more
convenient to assign electrons to individual atoms or fragments. Net atomic charges
(NACs) can be used to both understand the chemical states of the atoms in some
material and also to accurately represent the electrostatic potential of the material
outside of the region occupied by its electron distribution. As will be discussed in
Sect. 3.6, the treatment of molecules as a collection of point charges following the
laws of classical mechanics is the basis for most molecular mechanics methods. The
same sectionwill also discuss how, for commonly used forcefields, the partial charges
are fitted to reproduce the QM electrostatic potential of small molecules in an ESP
scheme. The resultant ESP charges are well-suited for force fields, reproducing ab
initiomultipolemoments and electrostatic interactions betweenmolecular fragments.
However, there is no unique method available for the partitioning of the rigorously
calculated quantum mechanical (QM) electron density among the individual atoms.
Furthermore, different charge derivation schemes can often lead to very different
results. In order to aid in the interpretation of QM simulations, atomic point charges
should respond in a chemically intuitive manner to their environment. In addition,
within biological systems the correct treatment of electrostatics is vital in the accurate
determination of the associated molecular interactions.

Electron density-based atoms-in-molecule (AIM) charge partitioning, which is
based on the Hirshfeld approach [133], differs from the ESP technique in that the
NACs are assigned by dividing a converged electron density into a union of overlap-
ping basins. Shortcomings of the original Hirshfeld method included an arbitrariness
in the choice of reference atomic densities used to define these overlapping atomic
basins. Such problems are addressed in recently proposed iterative extensions to the
Hirshfeld method, in which reference densities are successively improved until self-
consistency is achieved in the iterative Hirshfeld (IH) scheme [134] so the resultant
atomic densities closely resemble the reference densities of free ions in vacuum, giv-
ing chemically meaningful properties. An alternative to the IH scheme is termed iter-
ated stockholder atoms (ISA) where the spherical average of the partitioned atomic
density is used as a reference density. This scheme is argued to be less empirical than
the IH approach, producing a better fit to the electrostatic potential by constraining
the atomic densities to be as close to spherical as possible, ensuring there are no
higher order multipoles and allowing the charges to reproduce the desired electro-
static properties. The density derived electrostatic and chemical charges (DDEC)
method [135] combines the IH and ISA approaches to assign atomic charges from
the electron density. DDEC charges simultaneously reproduce the chemical states
of atoms in a material and the electrostatic potential surrounding the material’s elec-
tron density distribution. The formal mathematical details of the DDEC approach
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can be found in Ref. [135] and references therein. Previously, the use of a DDEC
AIM scheme was always limited by the computational expense of the underlying
QM method. This is a problem as the DDEC approach has many features making it
suitable for designing flexible force fields [136]. To resolve this issue, recent work
has implemented a DDEC method into onetep and this has been shown to generate
system-specific charges for a range of large-scale biomolecular systems [137]. An
accurate description of the electrostatic potential is critical in understanding enzy-
matic reactionmechanisms and so, where indicated, theDDECmethod has been used
in this dissertation to derive accurate atomic partial charge values from a converged
electron density using full-DFT. For all DDEC analysis presented in this work, the
mixing parameter χ is set to a value of 3

14 which is shown to give optimum balance
between minimising atomic multipoles whilst also maximising chemical accuracy
[138]. Vacuum reference densities for Hirshfeld analysis were generated internally
by solving the Kohn-Sham equation for free atoms in the presence of a charge com-
pensation sphere [137, 139] and were conditioned to the chemical environment via
the method described in Ref. [138]. It has been shown that this approach is suitable
for biomolecular systems [137], such as those studied in Chaps. 5 and 6. In addition,
these charges can be compared with NPA values to ensure consistency of results.

3.5 Structural Optimisation

It is the stationary points on the potential energy surface that hold the most important
information regarding chemical reactions. These points are defined as the nuclear
configurations at which the energy gradient is zero as the forces on the system vanish,
specifically:

∂E(X)

∂Xα
= 0 for 1 ≤ α ≤ 3N (3.72)

The aim of geometry optimisation is to locate these stationary points on the potential
energy surface. One of the main objectives within this dissertation is finding the
stationary points that correspond to local energy minima and the transition states
that connect them. This will allow an enhanced understanding of these chemical
reactions in the gas and solution phase along with those catalysed by enzymes.

3.5.1 Calculation of Forces

The general idea of the force conjugate to any parameter in the Hamiltonian was first
formulated byEhrenfest in 1927 [140]. It was hewhofirst recognised that this relation
is crucial for the correspondence of classical andquantummechanics.WhatEhrenfest
showed was an expression for force equal to the expectation value of the operator
that corresponds to acceleration 〈 d2 x̂

dt2
〉. These ideas were then implicit in other works

http://dx.doi.org/10.1007/978-3-319-19351-9_5
http://dx.doi.org/10.1007/978-3-319-19351-9_6
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by Born and Fock [141] that followed in 1928 and later made explicit by Güttinger
[142] in 1931. These formulaewere included in later work by Pauli [143, pp. 83–272]
in 1933 but it was Hellmann who reformulated them as a variational principle in a
form ready to apply to molecules [144] in 1937. In 1939, Feynman derived the force
theorem [145], explicitly pointing out that the force on a nucleus is independent of
the electron kinetic energy, exchange and correlation, depending only on the charge
density. It is the term “Hellmann-Feynman theorem” that has appeared to stick,
now being widely used amongst the community of computationalists implementing
force calculations. The force theorem gives us the force conjugate to any parameter
describing our systemof interest, in this case the parameter is the position of a nucleus
RI , and the force on this nucleus can be written as the negative total derivative of
the energy with respect to this parameter:

FI = − dE

dRI
(3.73)

and in the limit of a complete basis set the theorem holds for self-consistent solu-
tions [146–148]. The Hellmann-Feynman theorem has been shown to hold in DFT
[149]. In practice, DFT calculations employ a finite number of basis functions.When
the basis functions depend explicitly on the positions of the ions, corrections to the
Hellmann-Feynman forces must be calculated, in the form of Pulay forces [28].
Within onetep, the in situ optimisation of the NGWFs with respect to the psinc
functions, a systematically improvable basis set independent of the position of the
atoms, should, in principle, eliminate the correction due to Pulay forces from the
total ionic forces. It has been shown that for strict localisation constraints, especially
with small localisation regions, there can be non-negligible Pulay forces that must
be calculated as a correction to the Hellmann-Feynman forces in the ground state
[94]. Geometry optimization calculations, which rely heavily upon accurate eval-
uation of the total ionic forces, show much better convergence when Pulay forces
are included. In onetep, Eq. (3.73) is redefined in order to include the terms of the
implicit dependency of the density kernel and NGWFs on the nuclear coordinates,
as well as the explicit dependency of the energy on the nuclear coordinates:

− dE

dRI
= − ∂E

∂RI
− ∂E

∂K βα

∂K αβ

∂RI
−

∫
dr

δE

δφα(r)
∂φα(r)
∂RI

(3.74)

However, due to the LNV algorithm described in Ref. [81], the total energy is con-
verged with respect to the density kernel to a very high tolerance, giving the condi-
tion of:

∂E

∂K αβ
= 0 ∀ αβ (3.75)

and this can be routinely achieved. However, the task of achieving energy conver-
gence with respect to the expansion of the NGWFs with their underlying psinc basis
set is somewhat more difficult, resulting in ∂E

∂φα
�= 0 so the last term in Eq. (3.74)

remains, such that:
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FPulay =
∫

dr
δE

δφα(r)
∂φα(r)
∂RI

(3.76)

needs to be calculated along with the Hellmann-Feynman term ∂E
∂RI

. Obtaining the
desired tight convergence of energywith respect to the psinc expansion of theNGWFs
can be very difficult due to the kinetic energy operator, which has the effect of
spreading the NGWFs across the cell. With the added constraint of strict localisation
within a sphere, the resulting NGWF energy gradient converges, but often to a small
non-zero value. In this instance the total energy will converge quadratically with
respect to the KS states but the associated forces will converge at a slower rate.
Therefore the residual NGWF energy gradient has an insignificant effect on the
ground state energy but the FPulay term is non-negligible and needs to be retained in
the calculation of forces. It is expected that Pulay forceswill bemore significant in the
description of the forces in weakly bonded systems such as biomolecules, especially
when calculated using localised orbitals of small radii. The Pulay corrections applied
to the Hellmann-Feynman forces calculated in onetep [94] lead to an improvement
in the consistency between ground state energies and the associated forces acting
on the system for any size of localisation region. Biomolecular systems which have
significant numbers of weakly bound components are much better described when
Pulay corrections to the forces are included and, as such, these corrections are used
throughout the calculation of forces within this dissertation.Many algorithms have
been suggested for the problem of locating local energy minima on the potential
energy surface. One of the fastest methods that can be applied to large systems of
biomolecular interest is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm
and this is implemented in onetep. This implements a quasi-Newton approach and
constructs an approximate inverse Hessian matrix of second derivatives from energy
gradients calculated at a specified number of previous points. These approaches are
used to structurally optimise energy minima for large-scale biomolecular systems
investigated in this dissertation.

3.5.2 Normal Mode Analysis

The characterisation of atomic structures via the calculation of normal modes is
an important aspect of biomolecular simulation that should not be overlooked. The
process of normal mode analysis (NMA) is primarily used for identifying and char-
acterising the slowest, or lowest frequency, macromolecular motions that would
be otherwise inaccessible using other methods such as short timescale molecular
dynamics. NMA can, in principle, be applied to system sizes ranging from small
protein-ligand complexes up to the ribosome. NMA is defined as the study of har-
monic potential wells by some analytical means. To begin studying normal modes,
a stable configuration that represents the minimum of the potential energy surface
of the system is required. Figure3.6 illustrates a two-dimensional (ri ) representation
of a harmonic potential well. The directions ei are the associated normal modes.
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Fig. 3.6 A two-dimensional harmonic potential well. The two Cartesian coordinate axes of the
system are r1 and r2, the two normal mode directions are e1 and e2 [150]

It can be instructive to imagine the potential well as a bowl in which a classical
sphere moves around. If the sphere is moved along one of the normal modes, it will
move back and forth in this direction, whereas in any other direction it would be
deflected by the potential along some perpendicular direction. It is only the normal
mode directions that are independent for the system. As such, oscillations of the
sphere along either of the normal modes will have a defined frequency related to the
curvature of the bowl, or potential, along this direction of motion. In order to under-
stand this framework mathematically one must first consider an N -dimensional
potential V = V (X1, X2, . . . , X N ) with generalised coordinates Xi . Assuming that
the energy of the system at some initial position X0

i is given by V (X0
i ) then the

energy at a new position Xi = X0
i + hi may be approximated through the use of a

Taylor series expansion, up to second order [151]:

V (Xi ) ≈ V (X0
i ) +

∑

j

∂V

∂X j

∣∣∣∣
Xi j =X0

i j

h j + 1

2

∑

i, j

hi
∂2V

∂Xi∂X j

∣∣∣∣
Xi j =X0

i j

h j (3.77)
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which can be written much more elegantly using matrix notation:

V (X) ≈ V (X0) + GTh + 1

2
hTHh (3.78)

where G is the gradient vector and H is the Hessian matrix of second derivatives.
It is now helpful to recall that the eigenvectors ei of our symmetric Hessian can be
chosen to be mutually orthogonal with eigenvalues λi , expressed as:

Hei = λi ei (3.79)

and it is the eigenvalues λi that describe the curvature of the potential along the
normal mode directions. When considering the physical interpretation of normal
modes, it is the eigenvalues λi that describe the energetic cost of displacing the
system of one unit of length along eigenvector ei . So in fact, NMA is classifying the
potential deformations of a protein by their energetic cost. In the presence of a realistic
potential, low frequency modes will be associated with collective and delocalised
deformations whereas high frequency modes will correspond to local deformations.
This can be thought of as arising from the non-linearity of the interaction terms. Short-
ranged interactions, such as bond stretching, are stronger, and more rapidly varying
with position, than long-ranged interactions such as electrostatics. In practice, when
NMA is applied to an isolated system the first six eigenvalues should be zero, but in
reality, this test is often failed due to errors in the calculated forces andHessianmatrix.
The six zero eigenvalues are due to the fact that they describe the six rigid-body
movements of the system. These movements are translation along three independent
axes and rotation about three independent axes. These incur no energy cost and as
such are ignored in the analysis. Therefore, in practice, the ‘non-zero’ modes are
usually taken to refer to the lowest energy modes possessing non-zero energies. An
energy minima on the potential energy surface will have Hessian eigenvalues that
are all positive, whereas a transition state will have one negative eigenvalue. In the
next chapter, NMA will be used to confirm that this is the case for the calculated
energy minima and transition states.

3.5.3 Transition State Searching

In comparison to local minima, locating transition states is oftenmuchmore difficult.
One defines a transition state (TS) as a stationary point on the potential energy surface
where one of the eigenvalues of the Hessian matrix of second derivatives is negative
[152]. A TS therefore corresponds to a local energy maximum in one eigendirection
but a minimum in all others. A TS, by definition, has a negative force constant and
thus an imaginary vibrational frequency. This tells us that the corresponding motion
described by the associated normal coordinate will lower the energy, hence showing
that the current TS is not a stable structure in that eigendirection. The calculation of
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transition states is vital in the prediction of activation energies for enzymatic reactions
as it is the TS thatmust be passed through in order tomake the transition from reactant
to product. As discussed earlier in Chap.2, it is transition states that are stabilised by
enzymes in order to allow a reaction to occur at a faster rate. A large range ofmethods
exist for calculating transition states. Many have been proposed on the basis of the
so-called eigenvector-following technique which is described in Sect. 3.5.5. This is
a so-called single-ended method as it only requires an initial structure, acting as a
TS approximant, to start off the calculation. Other methods which are double-ended
require two equilibrium geometries between which it is expected a transition state
lies that connects the two.

3.5.4 Linear and Quadratic Synchronous Transit Methods

The linear synchronous transit (LST) method performs a series of single point cal-
culations on a set of linearly interpolated structures between given reactant (initial)
and product (final) atomic configurations as illustrated in Fig. 3.7. The path may be
defined by:

r i
ab( f ) = (1 − f )rRab − f rPab (3.80)

Fig. 3.7 Single-point projections of idealised structures (red) between minima (green) and transi-
tion state (blue) structures [153]

http://dx.doi.org/10.1007/978-3-319-19351-9_2
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where rRab and rPab are the internuclear distances between atoms a and b in the reactant
and product, respectively. In addition, the interpolation parameter f runs from 0
to 1. A significant drawback with Eq. (3.80) is that it over-specifies the geometry
of the system. This can be understood from the fact that the number of distinct
internuclear separations for a molecule comprising N atoms is equal to N (N − 1)/2
which for a molecule of N > 7 is greater than the 3N Cartesian degrees of freedom
for the system. Therefore the transit path must instead be defined through the use of
geometries with internuclear separations as close as possible to the idealised values,
found by minimising the following function [154]:

S( f ) = 1

2

∑

a�=b

(rab − r i
ab( f ))2

r i
ab( f )4

+ 10−6
∑

ζ=x,y,z

∑

a

(ζa − ζ i
a( f ))2 ≥ 0 (3.81)

where the interpolated Cartesian position of an atom is represented by ζ i
a and the

actual coordinate is ζa . By construction, Eq. (3.81) is identical to Eq. (3.80) at the
reactant and product geometries, when the interpolation parameter ( f ) is equal to
either zero or one, respectively. However, Eq. (3.80) can give multiple structures that
satisfy the constraints on internuclear separations at, for example, the LSTmaximum.
So by minimising S, for fixed f , using the coordinates from (3.80), one can solve for
the new coordinates, which makes a better interpolation, to a first approximation.

The LST maximum estimate is further improved by minimising the geometry,
with respect to the generalised reaction coordinate of the structure, defined by:

p = dR
dR + dP

(3.82)

where dR(P) is equal to the distance between the reactant (product) and any other
geometry of the molecule such that:

d2
R(P) = 1

N

∑

a

(ζa − ζR(P)a )2 (3.83)

The value of the reaction coordinate p from Eq. (3.82) runs from 0 at the reactant to
1 at the product state. So far, this transit path has been constructed purely on the basis
of geometric analysis alone, without the use of energy calculations. The maximum
energy structure along this pathway provides the first estimate of the TS structure. A
conjugate gradient (CG) refinement is then performed on this maximum in directions
conjugate to the reaction pathway, with the resultant structure used as an intermediate
to define the quadratic synchronous transit (QST) pathway, defined by:

r i
ab( f ) = (1 − f )rRab − f rPab + γ f (1 − f ) (3.84)
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Fig. 3.8 Linear and quadratic synchronous transit searching in practice, leading to the resultant
transition state. The activation energy (�E) converges toward the reaction coordinate (p) of the
transition state conformation

where γ ensures that the QST pathway includes this newly calculated intermediate
structure. An example of LST/QST searching in practice is illustrated in Fig. 3.8
where the activation barrier converges with calculated reaction coordinate from
Eq. (3.82). Firstly, the single-point energies of the reactant and product state geome-
tries are calculated, with a reaction coordinate of 0 and 1 respectively. Using these
two energy points, the energy maximum along the LST path is located (black line:
LST 1). A CG optimisation of this structure, in directions conjugate to the reaction
pathway, is then performed (red triangles: CG 1). Naive application of the CG saddle-
point algorithm discussed by Govind et al. will usually prove unsuccessful because
the system will have a tendency to fall to a point on the energy surface below the
saddle and repeated application of CGminimisations will optimise the system to one
of the local minima in the vicinity of the transition state rather than the saddle point
itself. A tendency of the optimisation process to veer away from the saddle towards a
minimumwill manifest itself as a build up of the gradient in the direction of negative
curvature s0. In the practical scheme devised by Govind et al. the conjugate gradient
processmust be restartedwith a newmaximisation step if the gradient in the direction
s0 becomes too large. In this scheme the gradient in the direction of s0 is monitored,
and the conjugate gradient process is terminated when this build up extends beyond
some tolerance factor. A new maximum is then searched for along the QST pathway
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connecting the reactant, product and the best transition state structure (blue line:
QST 1). A new CG cycle is then initiated (red triangles: CG 2). If the residual forces
on the TS approximant fall below some user-specified tolerance, the calculation is
considered to have converged. The LST/QST algorithm, based on the original incep-
tion by Halgren and Lipscomb [155] and modified by Govind et al. [154] has been
successfully applied using implementations in the Castep code [156–159] and the
DMol software package [160–171]. The LST and QST approaches discussed here
are implemented in the onetep code and have been used throughout this dissertation
to calculate activation energies.

3.5.5 The Eigenvector-Following Approach

The principle of eigenvector-foll owing lies in maximising the energy in one eigendi-
rection whilst simultaneously minimising the energy in all other eigendirections.
Recalling equation (3.79) we can write an arbitrary vector y as a linear combination
of the Hessian eigenvectors:

y =
∑

i

ai ei (3.85)

where ai are scalar coefficients. We are now confronted with the fact that for large
biomolecular systems comprising thousands of atoms it is undesirable, or sometimes
unfeasible, to calculate the Hessian matrix of second derivatives. In this instance it
is advisable to use a variational approach in order to find the smallest eigenvalue
and its corresponding eigenvector. This particular eigenvector is that of the ‘softest’
mode, as higher-order modes can be found using eigenvector-following but these
often correspond to transition states higher in energy than the true TS. Now if one
considers taking a step in some arbitrary direction y the expected value for y can be
defined as the Rayleigh-Ritz ratio [172]:

λ(y) = yTHy
y2

(3.86)

and by defining y in terms of the Hessian eigenvectors fromEq. (3.79) as in Eq. (3.85)
and recalling that the eigenvalues of these mutually orthogonal eigenvectors are λi

then a lower bound for λ(y) can be found:

λ(y) =
∑

i a2
i λi∑

j a2
j

=
∑

i a2
i (λi − λmin)∑

j a2
j

+ λmin ≥ λmin (3.87)



66 3 Computational Techniques

and differentiating with respect to aα yields:

∂λ

∂aα
= 2aα∑

j a2
j

(
λα −

∑
i a2

i λi∑
j a2

j

)
(3.88)

There are nontrivial turning points that exist for λ(y). In practice it has been found
that minimising λ(y)with respect to y ensures λ(y) becomes the smallest eigenvalue
of the Hessian whilst y becomes the corresponding eigenvector. In order to avoid the
explicit calculation of the Hessian, the numerical second derivative of the energy is
used as an approximation to λ(y):

λ(y) ≈ V (X0 + ξy) + V (X0 − ξy) − 2V (X0)

(ξy)2
(3.89)

where ξ � 1 and differentiating whilst keeping |y| = 1 gives:

∂λ

∂y
= ∇V (X0 + ξy) − ∇V (X0 − ξy)

ξ
(3.90)

Once the smallest eigenvalue and its corresponding eigenvector are known, an uphill
step can be taken in the direction of the eigenvector in order to find the transition
state. The magnitude of this step is derived in detail elsewhere [173]:

h = 2F

|λmin|
(
1 + √

1 + 4F2/λ2
) (3.91)

where F is the component of the gradient along the eigenvector emin corresponding to
the smallest eigenvalueλmin. A hybrid eigenvector-following/minimisation approach
is then used that combines this uphill step along emin with minimisation in all the
orthogonal directions, generating the transition state when the gradient drops below a
certain tolerance. In practice, TS conformations obtained fromLST/QSTcalculations
maybemore accurately refinedusing the gradient-only version of hybrid eigenvector-
following [172, 174, 175]. The procedure detailed here is repeated until a stationary
point with a negative eigenvalue and a maximum magnitude of energy gradient
below 0.01 eV/Å per atom is obtained. The hybrid eigenvector-following technique
described here is implemented in the OPTIM code which has been interfaced with
onetep. This approach has been used in this dissertation, where indicated, in order
to compare activation energies to less rigorous, but computationally less expensive,
LST/QST approaches.
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3.6 Classical Force Fields

In order to accurately explore the conformational space of large, complex systems,
within the limits of reasonable computational resources, a representative potential
energy function, or force field, is required to approximate the atomic interactions.
Force fields should be simple and easily differentiable, whilst preserving the charac-
teristic features of the more accurate, yet time consuming, ab initio methods that are
necessary for describing the electronic structure of the system. They are a common
tool for studying macromolecules of biological interest. Amongst other things, force
fields allow the structure-activity relationships of macromolecules to be studied in
atomic detail. Whilst the quantum mechanical techniques outlined previously can be
applied to systems up to tens of thousands of atoms, empirical approaches can be
routinely applied to systems comprising hundreds of thousands of atoms. In fact, a
total system size of 320 billion atoms has been studied using molecular dynamics,
representing a cubic piece of metal with an edge length on the micrometer scale
[176]. On a more practical length scale of calculations, the dynamics of systems can
also be investigated, up to the nanosecond time regime and beyond. The essential
job of any force field is to map the structure R onto the energy U (R) of a system of
interest. A force field is usually expressed as sums of two-, three- and, sometimes,
four-body particle interactions. Some of the common and more important contribu-
tions to force fields are illustrated in Fig. 3.9. Ideally, a minimal set of functions will
be used to describe the molecular structure. A harmonic treatment is usually applied
to the bonds, angles and out of plane distortions (improper dihedrals). The torsional
and dihedral terms are described by a sinusoidal expression. On the non-bonded side,

Fig. 3.9 Key contributions to biomolocular force fields
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a Coulombic term is used to treat the electrostatics. This is usually combined with a
Lennard-Jones term to describe the atomic repulsion and dispersion interaction. The
form used in the most commonly found biomolecular force fields is as follows:

U (R) =
∑

bonds b

Kb(rb − r0)2 +
∑

angles a

Kθ(θa − θ0)
2 +

∑

dihedrals d

Kχ (1 + cos(nχd − σ))

+
∑

impropers η

Kη(φη − φ0)
2 +

∑

nonbonded pairs ij

([
C (12)

i j

r12i j

− C (6)
i j

r6i j

])
+

∑

i< j

qi q j

ri j

(3.92)

where rb is the bond length, θa is the valence angle, χd is the dihedral angle, φη is
the improper angle and ri j is the separation between nonbonded atom pairs i and
j . The intramolecular parameters are parameterised against experimental and ab
initio observables. The associated equilibrium values are denoted by a 0 subscript.
Kb and Kθ are the force constants for bond length and valence angle, respectively.
The dihedral force constant, multiplicity and phase angle are represented by Kχ, n
and σ respectively. The improper force constant and improper equilibrium angle are
represented by Kη and θη . The C (6)

i j and C (12)
i j are the van der Waals terms and the

final summation treats the electrostatic interactions.
Classical force fields have been established as an invaluable tool for the investiga-

tion of many systems of biological relevance. Extensive development of force fields
and the parameterisation thereof has provided a vast toolkit containing a multitude of
classical approaches to treat the common amino acids found in enzymes. The generic
terms presented in Eq. (3.92) are commonly used within many biomolecular force
fields, including charmm [177], amber [178, 179], gromos [180] and opls [181].
Within which, the canonical ensemble (NVT) and the isothermal-isobaric ensemble
(NPT) are two key approaches that are used when simulating biomolecular systems.
However, all protein force fields have a significant drawback in that the calculated
results can sometimes depend strongly on the choice of parameters used for inter-
atomic potentials. Force fields can not accurately describe electron bond cleavage and
formation, electronic states and by association, spectroscopy. In addition, the inclu-
sion of transition metals or unusual ligands or functional groups that are difficult to
correctly parameterise within force fields are also more accurately treated within a
DFT framework. The atomic partial charges used within the majority of standard
force fields are often fit to the electrostatic potentials of small molecules calcu-
lated via expensive quantum chemical calculations. Whilst this process generates
accurate partial charges for small molecules such as amino acids in the gas-phase,
using these values for an entire protein will neglect long-range electronic polari-
sation and give only an average picture. A recent DFT investigation of an entire
protein in water demonstrated that net charges of residues can vary by up to 0.5e
from their putative integer values [124], while the electrostatic potential generated
by force field charges may differ significantly from accurate ab initio simulations
[137, 182]. In addition, force fields can not include charge transfer effects, so they
have issues with transferability and accuracy. A number of validation studies have
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gathered an overall consensus that, whilst fixed charge models offer computation-
ally tractable descriptions and are robust enough for calculating the equilibrium
properties of homogeneous systems, away from these ambient conditions significant
discrepancies between experiment and simulation have been seen [183, 184]. These
discrepancies caused through the use of the fixed charge approximation have an
effect on dynamical properties and heterogeneous systems in general. The problems
outlined here can be partially overcome by implementing a mixture of QM within
classical force fields, in hybrid QM/MM approaches, which are discussed in the next
section.

3.7 Hybrid Quantum Mechanics/Molecular Mechanics
Approaches

The extensive conformational sampling which is required to accurately treat the
entirety of a biomolecule is unfeasible with conventional quantummechanical (QM)
approaches due to computational demands. Due to the problems with force fields,
described in the previous section, combinedwith the fact thatmany enzyme-catalysed
reactions involve the breaking and forming of electron bonds, methods using a com-
bination of classical molecular mechanics (MM) force fields and QM methods are
often implemented. In these so-called QM/MM approaches [185–188], a small part
of a system, usually a region of chemical interest in which important changes such
as covalent bond breaking and forming take place, is treated with QM in order to
describe the electronic structure of specific fragments. The remainder of the system
is then treated with a comparatively simple empirical potential in order to describe
the protein and water environment surrounding the QM region. The level of QM
theory used must be balanced against computational expense which results in less
rigorous methods often being used in comparison to conventional quantum chem-
istry calculations on small molecules. Particular applications that have proved sturdy
test-beds for QM/MM approaches include citrate synthase [189], P450cam [190] and
lysozyme [185, 191, 192], while many more are reported in the literature [193].

There are two predominant schools of thought concerning how to approach
QM/MM methods. The additive approach describes the total energy as:

Etot = EQM + EMM + EQM-MM (3.93)

where EQM is the energy of the QM region calculated with the QM method. The
energy of the MM region calculated with the force field approach is represented by
EMM. The interaction energy between the two regions is represented by EQM-MM.
Whereas in the subtractive approach the total energy is described as:

Etot = EMM-tot + EQM − EMM-QM (3.94)
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where EMM-tot and EMM-QM are the energies of the total and QM systems, respec-
tively, calculated by the MM approach. In studies of enzyme catalysis it is mainly
the additive method which is used, treating the substrate undergoing a reaction with
a QM approach and the surrounding protein and solvent with MM. The use of atom-
istic simulations to model enzyme-catalysed reactions, starting from the pioneering
works of Warshel, Levitt and others [185, 194] has risen to prominence in recent
years, leading to the new field of computational enzymology [195, 196].

Due to the computational expense of conventional QMapproaches, theQM region
in a QM/MM simulation is often restricted to include only the reactive groups, an
approach rationalised mainly by chemical intuition. The validity of this approach
and how the QM region size impacts calculated properties has been investigated in
a handful of systems but no definitive conclusions have been reached. A QM/MM
study of the dependence of the central QM atom force error on the size of the QM
region demonstrated that convergencewas only achieved at a size of between 300 and
500 atoms, depending on how the region is chosen, when describing the QM system
using PM3 and AM1 semiempirical methods [197]. Similarly, a QM/MM study of
a twin arginine pair in adenovirus Ad11, implementing the HF/SVP level of theory
for the QM atoms, demonstrated a QM region of 437 atoms was required to generate
converged isomerisation energies [198]. Further, to achieve spectral convergence of
QM/MM excited states of photoactive yellow protein, a QM region of 723 atoms
was required in which the QM atoms were described at the TD-ωPBE/6-31G(d)
level [199]. Results such as these suggest that inconsistencies in the treatment of
long-range electrostatic interactions between QM andMM regions [197] may occur,
which can critically affect results due to the polar nature of many enzyme active
sites.

QM/MMcan also suffer from inaccuracies due to the coupling scheme used to link
the two regions, for which numerous approaches exist. The results from simulations
can depend strongly on this choice and it may not always be straightforward to
converge the results or test the methodology applied. In explicit solution models or
enzyme systems whereby the substrate and any co-factors are not covalently bound
to the enzyme, this partitioning does not prove to be a problem. However, in the
case of a QM region describing a ligand covalently bound to a protein, it would be
unrealistic to simply truncate the QM region, therefore treating the bond as being
homolytically or heterolytically cleaved. A QM/MM boundary that slices through a
covalent bond will first need to address the dangling bonds of any cleaved QM atoms,
followed by ensuring the QM region is not overpolarised by the neighbouring MM
charges. In addition, the bonded MM terms involving atoms from each subsystem
must be selected as to avoid double-counting. There are three broad ways in which
this can be achieved. The first involves link-atom schemes [200, 201] that introduce
an additional atomic centre into the QM region, typically a hydrogen atom, that
is not part of the real system but acts to saturate any dangling bonds. Secondly,
boundary-atom schemes [202] replace the MM atom at the border between regions
with a boundary atom that then appears in each region. In the QM region it mimics
the severed bond and the MM residue bonded to it, whilst the MM region ‘sees’ a
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normal MM atom. Lastly, localised-orbital schemes [185] place hybrid orbitials at
the boundary, keeping some of them frozen, in order to cap the QM region.

Another potential problem encountered by QM/MM calculations is that of elec-
tron leakage. This is the phenomenon whereby positively charged classical point
charges can act as traps for the electron density from the QM region [187, 203–209].
This problem emerges due to a lack of Pauli repulsion from the electron cloud that
would normally surround a positively charged atom, resulting in over-polarisation
of the electron density at short range by an incorrect and purely attractive potential.
A further problem with QM/MM approaches is the error associated with the choice
of force field. It has been shown that different force fields, or even different ver-
sions of the same force field, can produce qualitatively different results [210–212].
One systematic study of the folding behaviour of non-amyloid peptides indicated
that amber99 favours helical structure, gromos96 [213] may overestimate β con-
formations but opls-aa [214] results in balanced α and β structures [212]. It has
also been shown that nonpolarisable force fields have a tendency to overestimate the
coordination number and rigidity of the solvation shell of typical cations and ions
[215, 216]. However, advances are being made in the development of polarisable
approaches [217], such as the amoeba force field [218], where the fixed partial
charge model is improved upon by the use of atomic multipole-based electrostat-
ics and explicit treatment of dipole polaristation. These approaches have not been
used in QM/MM studies due to a lack of accurate paramaterisation and the need
for a framework to interface polarisable force fields with QM calculations. In gen-
eral, QM/MM investigations of enzymatic reactions require a significant investment
in the setup and preparation of the system in question before the calculations can
even begin [187]. Any errors introduced at this stage through unsuitable choices
will propagate throughout the study and cannot be recovered at a later phase of the
calculations [188].

In order for computational enzymology to have impact in other communities it
is important to make simulation methods and their associated results accessible to
non-specialists [193]. This is a central theme of this dissertation and is evidenced by
the removal of the additional complexity of the selection of force field parameters and
QM/MM boundary partition scheme in later chapters. An alternative to the hybrid
schemes outlined in this section, is to perform QM calculations on an entire system,
or a significant part of it. Unbiased ab initio calculations of peptides, harnessing the
power of GPUs, have been shown to be able to predict protein structure at the same
level as empirical force fields that have been extensively paramaterised specifically
for that purpose [219]. The same calculations demonstrated that ab initio approaches
can predict the structures of proteins with regions of disorder to a much greater
accuracy than that of force fields. Other investigations have also shown that DDEC
charges generated from large-scale DFT calculations perform better than standard
amber ff99sb atomic partial charges in replicating protein dynamics when incor-
porated within classical force fields [137]. Using the linear-scaling first principles
approach described in Sect. 3.4, explicit treatment of the electrons can be performed,
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taking into account the electronic charge transfer and polarisation, for systems con-
taining many thousands of atoms and the methods are transferable to any chemical
environment. These types of investigations are the subjects of Chaps. 5 and 6.

3.8 Summary

This chapter has outlined the capabilities of the various tools used within this dis-
sertation and the approaches taken when simulating systems of biological interest.
It is the combination of the techniques described in this chapter that will allow the
study of the properties of complex biomolecules such as enzymes, described in the
previous chapter. Best practices and efficient methodologies for the general treatment
of biomolecular systems using the methods outlined in this chapter, from classical
to QM/MM to full-DFT, will be the focus of Chap. 5. Building upon these method-
ologies, an investigation into the Bacillus subtilis chorismate mutase enzyme will
be discussed in Chap.6. Before extending to much larger systems of biomolecular
interest, the next chapter will validate the methods described in this chapter through
investigations of well-studied small molecules with the goal of reproducing known
results.
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Chapter 4
Validation Studies

Aristotle maintained that women have fewer teeth than men;
although he was twice married, it never occurred to him to
verify this statement by examining his wives’ mouths

—Bertrand Russell, Impact of Science on Society — Ch. 1
(1952)

There are few principles that should be prioritised over the process of validation.
To ensure one can rely on the results that emerge from proof-of-principle calcula-
tions, such as those presented in Chap. 6, one must be able to reproduce, or closely
approximate, results seen both in experiment andmore advanced levels of theory and
computation, whilst keeping in mind any technical issues present in the approaches.
The calculations presented in this chapter are designed to provide confidence in the
methods available in the onetep and OPTIM codes and the efficient interface that
exists between the two for searching for stationary points on the potential energy
surface. A primary method of interest within this dissertation is structural optimisa-
tion, comprising both energy minimisation and transition state searching. To ensure
the reactants and products, along with the transition states that connect them, can
be trusted when investigating enzyme catalysed reactions, the methods must first be
validated against the structures of small molecules in vacuo. The simple ethenemole-
cule has a well-defined structure and accurately observed normal mode frequencies.
Therefore structural optimisation procedures and normal mode analysis methods
will be used to attempt to reproduce what is seen in experiment. Ethene will be the
focus of Sect. 4.1. The well-studied alanine dipeptide has proved to be a particularly
good example for verifying new methods or extensions to existing approaches in
order to validate the particular advances made. In addition, the structural properties
this molecule possesses are very similar to those found in the backbone of many
proteins. Therefore, if the structural properties of dialanine energy minima and tran-
sition states, in vacuo, can be accurately reproduced, this will provide confidence
of the ability of the methods to tackle the protein structures found in real systems.
This molecule is the subject of Sect. 4.2. The focus of the chapter then shifts to the
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pericyclic rearrangement of chorismate to prephenate in Sect. 4.3. In order to be able
to consider the complexities involved in describing enzyme reactions, the structural
optimisation procedures in onetep must be validated against a relevant small-scale
reaction.

This work will not only validate the structural optimisation procedures in onetep
but will also test the interface that exists between onetep and OPTIM in order
to further refine the linear and quadratic synchronous transit (LST/QST) transition
state candidates with rigorous hybrid eigenvector-following methods. The chapter
concludes with a brief summary outlining the findings and their significance to the
remainder of the dissertation.

4.1 Ethene

Ethene is a simple, unsaturated hydrocarbon with the chemical formula H2C=CH2.
The molecule is widely used in industry and its production exceeds that of any
other organic compound. It is also used within the agricultural sector to accelerate
the ripening of fruit. A representation of the molecule can be seen in Fig. 4.1. The
main objective of studying ethene is to validate the onetep/OPTIM interface for a
small molecule. Preliminary convergence tests were performed, using a reasonable
starting guess of coordinates, in order to demonstrate the convergence of calculated
properties. Figure4.1 shows total energy convergence with respect to equivalent
cutoff energy in onetep. For increasing equivalent planewave cutoff, the total energy
for the molecule decreases, as is expected for variational methods. Therefore there
is a gain in energy upon increasing the cutoff. This energy gain, per atom, is shown
to converge to the meV level.

Figure4.2 compares the calculated bond lengths and angles angles at each step
through the optimisation procedure with those obtained from microwave spec-
troscopy [1]. It is the PBE functional [2] combined with dispersion corrections due
to Elstner et al. [3] that is used throughout the DFT calculations presented in this
chapter and the remainder of this dissertation. The figure shows that the calculations
localising theNGWFs in a radius of 8.0 a0 yielded converged bond lengths and angles
in the onetep structural optimisation. Using this value with the converged equivalent
plane wave cutoff energy of 1050 eV, as suggested from Fig. 4.1, the geometry of
the structure was then optimised using onetep until the maximum calculated force
on any atom decreased below 0.01 eV/Å. The geometry optimisation yielded a C=C
double-bond length 1.57% shorter than that observed via spectroscopy and a shorter
C−H bond by 0.33%, along with a 0.28% wider H−C=C angle. The magnitude
of these errors are typical of those found in density-functional studies [4]. A nor-
mal mode analysis was then performed on this structurally optimised conformation.
By definition, for the zero-frequency modes, the geometry of the molecule is not
altered. Non-linear molecules have three zero-frequency rotational modes, hence
3N − 6 normal modes. The calculations in Fig. 4.3a, corresponding to the normal
modes illustrated in Fig. 4.3b, yield a systematic error with experiment of 26%.
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Fig. 4.1 Convergence of ethene energy gain per atom. Inset: convergence of total energy with
increasing equivalent plane wave cutoff energy and a skeletal representation of the ethene molecule
with experimental measurements determined via microwave spectroscopy [1]. The spacing of the
psinc grid was explicitly set in order to compare with the cutoff used in an equivalent plane wave
calculation

Whilst these sorts of errors are toward the upper bound of those expected within
DFT implementing PBE functionals, previous authors have demonstrated underesti-
mates in calculated frequencies using density-functional methods [5], andmanyDFT
methods have been shown to yield inaccurate estimates for C−H frequencies [6, 7].
However, Fig. 4.3a shows that qualitative agreement has been found between calcu-
lated and experimentally observed normal modes. Six ‘zeroes’ along with a band of
eight finite frequencies followed by a band of four frequencies at approximately twice
as large a frequency have been calculated. These match qualitatively with what is
observed experimentally [8], shown in Fig. 4.3b. Previous authors have demonstrated
that onetep is able to achieve plane wave accuracy [9, 10] upon increasing NGWF
radii and fineness of the psinc grid. Temperature effects have not been considered
but these could potentially be important. Normal mode analysis assumes harmonic
potential wells and the harmonic frequencies have been calculated at 0K, whereas
the experimental observations were performed at room temperature.
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Fig. 4.2 Convergence of ethene, a carbon-carbon double-bond length, b carbon-hydrogen bond
length and, c carbon-hydrogen angle during onetep structural optimisation. The NGWFs used for
the optimisation were localised in radii of 8a0 (black line) and 10a0 (blue line). A comparison is
made with experimental values (red line) [1]

Fig. 4.3 a Analysis of normal modes performed using the onetep/optim interface (using NGWFs
of radii ranging from 8.00a0 to 10.75a0) compared with, b experimental observation [8]

4.2 Alanine Dipeptide

The alanine dipeptide, terminally blocked by methyl groups, is regarded as a pro-
totype of non-proline/non-glycine protein residues [11]. This is due to the full φ/ψ
sampling that dialanine allows,without the added complexity of the sidechain degrees
of freedom. If the calculated potential energy surfaces for the vacuum and the sol-
vated dialanine conformations are combined, it can be shown that themolecule is able
to adopt every (φ,ψ) dihedral angle combination observed for α-helix and β-sheet
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structures within protein complexes [12, 13]. The dialanine molecule is deceptively
simple but the effective potential energy surface of the dipeptide displays of the order
of five minima. However, this precise number depends on the method of solvation
(or lack thereof) and the particular form of the effective potential model used [14].
Dialanine is a very good candidate for validating any previously untested computa-
tional approaches, as many studies exist in the literature, starting from Peter Rossky
andMartin Karplus’ pioneering 1979 publication [15], that investigated themolecule
from the perspective of kinetics [14, 16], thermodynamics [17–21] and spectroscopy
[22–26]. Dialanine along with the alanine tri- or tetrapeptides [27] are often simu-
lated at the ab initio level in order to parameterise the amino acid backbone force
fields used within molecular mechanics calculations [28, 29]. It is normally the case
in standard empirical molecular mechanics force fields that bonded and non-bonded
terms derived from dialanine calculations will be used to model the backbone of
all non-glycine and non-proline residues [30]. However, there are a few particular
instanceswhere this is not the case, notably theamber force fieldwhere the backbone
atomic partial charges may vary for each residue [31].

Conformational changes from one dialanine energy minimum to another involve
rotation about the backbone dihedral angles, passing through transition state struc-
tures. At least four such transitions occur in a force field description of dialanine.
As such, this small molecule provides an extremely good test for transition state
searching techniques. The molecule in the gas phase has a conformational space
with well-defined minima and transition states that are present without the need for
surrounding solvent or protein. Therefore, the inclusion of additional protein scaf-
folds such as enzyme active sites are not required in the calculations, making them
inexpensive and a good starting point for further investigations involving enzyme-
catalysed transition state searching on substrates embedded within a large protein
matrix such as the calculations presented in Chap. 6 of this dissertation. In principle,
when repeated over multiple residues, β structures, with a φ range from −60◦ to
−170◦ and a ψ range from 120◦ to 170◦, correspond to extended β-sheet secondary
structures. C7ax structures, with a φ of around 50◦ and ψ of around −130◦, are
associated with the formation of turns and loops within protein secondary structure.

Previous authors have calculated minima and transition states of dialanine using
the charmm22 force field in vacuum (c22vac) [32] and the resulting structures
are shown in Fig. 4.4. The minima and transition states from Ref. [32] are simple
geometrically defined objects, which are temperature independent and the calcu-
lated harmonic frequencies are temperature independent and correspond to normal
mode analysis for the stationary points. Therefore the geometries can be directly
compared with onetep geometry optimised minima and LST/QST TS structures.
The investigation in Ref. [32] calculated the dialanine free energy surfaces using a
superposition of partition functions based upon harmonic densities of states sampled
at local energy minima and transition states. The relative free energies of the sta-
tionary points, which are calculated from the harmonic vibrational densities of states
at the relevant temperature, are quoted in Ref. [32] at room temperature. As such,
the resulting �F values represent the harmonic free energy at 298K, relative to the
C7eq minimum energy conformation. The investigation presented in this chapter has

http://dx.doi.org/10.1007/978-3-319-19351-9_6
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 4.4 Dialanine TS minima (a)–(c) and transition state (d)–(g) conformations yielded from the
in vacuo c22vac potental in Ref. [32]
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taken the minima and transition state structures from Ref. [32] and calculated the
temperature independent potential energies, using the classical c22vac potential,
that can be compared directly with onetep activation and reaction energies. Such a
comparison is made in Table4.3.

Tables4.1 and 4.2 compare the structural parameters of dialanine calculated
from Ref. [32] and onetep simulations. First considering the minima structures
in Table4.1, the bond lengths and angles calculated using onetep structural opti-
misation is in good agreement with the classical potential, yielding differences of
between 1 and 2%. In addition, similar differences are present in the bond lengths
and angles calculated using the LST/QST TS searching approach for the transition
state structures present in Table4.2. The onetep-calculated torsion angles for the
minima, presented in Table4.1, display a difference of between 1 and 6% with the
classical potential, except for the ψ angle for C7ax which yields a discrepancy of
20% with the classical approach. However, the torsion (φ, ψ) angles, for the tran-
sition state structures, presented in Table 4.2 show significant discrepancies in the
structures structurally optimised using onetep compared to the classical potential.
This reflects on the lack of a rigorous treatment for dispersion interactions in DFT
and the empirical corrections that have been applied in these calculations. Therefore
it is unsurprising that the torsion angles fromDFT calculations do not agreed entirely
with those froma classical potential. However, another source of the discrepancies for
the transition state structures are the errors that are present in the classical approach,
such as the fact that the force field is unlikely to be parameterised for structures in
their transition state, but instead in their energy minima.

Table4.3 compares the relative enthalpies calculated usingonetep structural opti-
misation with the temperature-independent potential energies calculated using the
c22vac classical potential for the structures presented in Ref. [32]. The generalised
reaction coordinate, as explained in Ref. [33], was calculated for the converged tran-
sition state structures, yielded from c22vac and onetep simulations, using equa-
tions (3.82) and (3.83). Table4.3 reveals that the energetic ordering of the c22vac
energy minima is reproduced in onetep calculations. It is fairly well agreed upon
that the equatorial C7 conformation, C7eq, is that of the global energy minimum of
the in vacuo dialanine potential energy surface. This structure gained its name as
a result of the seven-atom central ring structure present and the equatorial orienta-
tion of the alanine sidechain with respect to this structure [34]. Raman experiments,
NMR and depolarised Rayleigh scattering observations also suggest this conforma-
tion is the most energetically favoured in both aqueous and non-aqueous solution
[35]. It is stated in Ref. [32] that the β conformation is entropically favoured as it
allows for more conformational flexibility than the C7eq conformation. However,
the entropic contribution, included within the harmonic free energies calculated in
Ref. [32] (�F values shown in Table1 of the paper), is not significant enough to
change this ordering. This is also shown to be the case when re-calculating the
temperature-independent potential energy differences (�E), as has been done in this
investigation. An important structural characteristic that onetep describes well is
the hydrogen bond between the C5=O6 and N17−H18 groups of the two peptide
links. As these hydrogen-bonding interactions are very important in the stability of

http://dx.doi.org/10.1007/978-3-319-19351-9_3
http://dx.doi.org/10.1007/978-3-319-19351-9_3
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Table 4.1 Dialanine geometrical parameters from c22vac and onetep minimum energy bond
lengths in Ångströms, indicated by N1–N2 labels, and bond angles in degrees (◦), indicated by
N1–N2–N3 labels

C7eq β C7ax

c22vac [32] onetep c22vac [32] onetep c22vac [32] onetep

φ –81.4 –84.3 –151.4 –157.6 69.7 73.6

ψ 70.5 71.3 170.6 160.3 –67.6 –54.3

C1–C5=O6 121.3 122.7 121.2 123.0 120.6 121.9

C1–C5–N7 116.6 115.2 116.4 114.7 115.9 114.6

O6=C5–N7 122.0 122.1 122.4 122.3 123.5 123.5

C5–N7–H8 120.4 119.4 121.5 123.0 118.2 116.9

C5–N7–C9 123.3 123.1 122.8 122.1 125.9 127.1

C9–N7–H8 116.3 117.5 115.6 114.7 115.8 115.9

C9–C15–N17 116.8 113.0 117.6 115.4 117.9 115.6

C9–C15=O16 121.9 122.9 120.8 121.7 120.6 120.2

O16=C15–
N17

121.3 124.0 121.5 122.8 121.4 124.3

H18–N17–
C15

118.5 117.2 120.4 118.9 117.9 117.7

C15–N17–
C19

122.4 121.5 121.6 122.0 122.6 121.5

C19–N17–
H18

119.0 120.4 118.1 119.1 119.3 120.8

C1–H2 1.11 1.09 1.11 1.09 1.11 1.09

C1–H3 1.11 1.09 1.11 1.09 1.11 1.09

C1–H4 1.11 1.09 1.11 1.09 1.11 1.09

C11–H12 1.11 1.09 1.11 1.09 1.11 1.09

C11–H13 1.11 1.09 1.11 1.09 1.11 1.09

C11–H14 1.11 1.09 1.11 1.09 1.11 1.09

C9–H10 1.08 1.09 1.08 1.09 1.08 1.09

C19–H20 1.11 1.09 1.11 1.09 1.11 1.09

C19–H21 1.11 1.09 1.11 1.09 1.11 1.09

C19–H22 1.11 1.09 1.11 1.09 1.11 1.09

N7–H8 0.99 1.01 1.00 1.02 0.99 1.01

N17–H18 1.00 1.02 0.99 1.01 1.00 1.02

C1–C5 1.48 1.51 1.48 1.51 1.48 1.51

C9–C11 1.54 1.51 1.54 1.53 1.55 1.52

C9–C15 1.53 1.54 1.52 1.52 1.53 1.54

C5–N7 1.34 1.36 1.34 1.36 1.34 1.36

C9–N7 1.45 1.46 1.44 1.44 1.46 1.47

C15–N17 1.35 1.35 1.35 1.35 1.35 1.35

C19–N17 1.44 1.45 1.44 1.45 1.44 1.45

C5=O6 1.22 1.23 1.22 1.23 1.22 1.23

C15=O16 1.23 1.23 1.23 1.23 1.23 1.23

The dihedral angles φ and ψ are defined as those involving C5−N7−C9−C15 and
N7−C9−C15−N17, respectively
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Table 4.2 Dialanine geometrical parameters from c22vac and onetep transition state structures
in Ångströms, indicated by N1–N2 labels, and degrees (◦), indicated by N1–N2–N3 labels

(C7eq ↔ β)
‡
1 (C7eq ↔ β)‡ (C7eq ↔ β)

‡
2 (C7eq ↔ C7ax)‡ (β ↔ C7ax)‡

c22vac
[32]

onetep
[32]

c22vac c22vac
[32]

onetep c22vac
[32]

onetep

φ –104.8 –124.1 –99.3 –1.1 71.0 125.7 71.8

ψ 139.8 109.8 –72.3 –69.8 –48.2 –120.1 –56.9

C1–C5=O6 121.2 122.1 120.9 120.1 121.9 119.7 121.9

C1–C5-N7 116.4 115.4 116.2 115.4 114.7 114.9 114.6

O6=C5–N7 122.45 122.50 122.9 124.6 123.4 125.4 123.5

C5–N7–H8 120.4 120.7 119.2 116.0 116.6 116.8 117.0

C5–N7–C9 123.2 121.1 123.3 130.4 127.6 130.0 127.3

C9–N7–H8 116.1 117.8 117.5 113.6 115.6 113.2 115.8

C9–C15–N17 117.4 114.7 117.7 118.3 116.2 118.4 115.3

C9–C15=O16 121.2 122.0 121.5 120.5 119.0 120.3 120.0

O16=C15–N17 121.4 123.3 120.8 121.2 124.8 121.3 124.6

H18–N17–C15 120.4 118.5 120.4 118.5 117.4 119.5 117.4

C15–N17–C19 121.5 122.3 118.2 119.5 121.9 118.5 121.9

C19–N17–H18 118.0 119.2 121.4 121.7 120.6 121.9 120.7

C1–H2 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C1–H3 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C1–H4 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C9–H10 1.08 1.09 1.08 1.08 1.09 1.08 1.09

C11–H12 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C11–H13 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C11–H14 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19–H20 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19–H21 1.11 1.09 1.11 1.11 1.09 1.11 1.09

C19–H22 1.11 1.09 1.11 1.11 1.09 1.11 1.09

N7–H8 0.99 1.01 0.99 0.99 1.01 0.99 1.01

N17–H18 0.99 1.01 0.99 0.99 1.02 0.99 1.02

C1–C5 1.48 1.50 1.48 1.48 1.51 1.48 1.51

C9–C11 1.54 1.53 1.54 1.54 1.52 1.55 1.52

C9–C15 1.52 1.52 1.53 1.53 1.54 1.52 1.54

C5–N7 1.34 1.36 1.34 1.34 1.36 1.34 1.36

C9–N7 1.45 1.46 1.45 1.46 1.47 1.46 1.47

C15–N17 1.35 1.36 1.35 1.35 1.35 1.35 1.35

C19–N17 1.44 1.45 1.44 1.44 1.45 1.44 1.45

C5=O6 1.22 1.23 1.22 1.22 1.23 1.22 1.23

C15=O16 1.23 1.23 1.23 1.23 1.23 1.23 1.23

The dihedral angles φ and ψ are defined as those involving C5–N7–C9–C15 and N7–C9–C15–N17
respectively
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Table 4.3 Comparison of energy differences (�E /kcal mol−1) and generalised reaction coordi-
nates (GRC/arb. units) [33] between c22vac potential minima and transition state structures [32]
recalculated to generate temperature-independent potential energies, and those in the present chapter

Structural �E /kcal mol−1 GRC/arb. units

Conformation c22vac onetep M22vac onetep

C7eq 0.00 0.00 - -

β 0.91 1.14 - -

C7ax 2.05 1.31 - -

(C7eq ↔ β)‡ - 5.22 - 0.39

(C7eq ↔ β)
‡
1 1.50 - 0.43 -

(C7eq ↔ β)
‡
2 4.88 - 0.42 -

(β ↔ C7ax)‡ 7.78 1.73 0.74 0.84

(C7eq ↔ C7ax)‡ 8.48 1.58 0.53 0.83

The PBE functional [2] with empirical dispersion corrections [48] have been used for the onetep
calculations presented

protein structures in general, and also in the catalytic rate enhancement produced by
enzyme active sites, this is a very encouraging result.

The TS structures presented in Table4.2 were calculated using the LST/QST
approach, using only the C7eq, β and C7ax energy minima structurally optimised
in onetep calculations. No additional information was required from the classical
simulations in order to obtain the transition states. By the nature of the LST/QST
approach, only one transition state can be found between two structures. However,
with the TS searching performed in Ref. [32], two TS structures were found for
the C7eq ↔ β transition. As a sanity check, the (C7eq ↔ β)

‡
1 and (C7eq ↔ β)

‡
2

transition state structures, located from c22vac simulations, were used in separate
QST calculations as an initial approximant for the mid-point between the energy
minima calculated using onetep. In each instance, the final structure, generated
by onetep QST simulations, adopted the identical conformation to when no initial
guess for the mid-point was supplied, indicating the robust nature of the LST/QST
TS searching approach.

The conformational space accesible to dialanine can be illustrated in two dimen-
sions by plotting the φ angles against the ψ angles, in a so-called Ramachandran plot
named after its inventor Ramachandran [36]. Such plots for dialanine described by a
variety of classical force fields are presented in Fig. 3 of Ref. [32]. On inspecting the
Ramachandran plot for c22vac vacuum simulations, it is clear that the (C7eq ↔ β)

‡
1

structure requires the least amount of atomic rearrangement in order to pass from the
initial to final energyminima via this transition state conformation. Therefore, it is the
(C7eq ↔ β)

‡
1 transition state structure that is most likely to be found in each instance

of LST/QST calculations, which provide a less rigorous, though computationally less
expensivemethod compared to the reaction pathHamiltonian superposition approach
used in Ref. [32]. In a similar manner to the discrepancies seen in the torsion angles,
the onetep-calculated GRC values also display significant differences compared to
the classical potential. Again this is likely to be due to the lack of parameterisation of



4.2 Alanine Dipeptide 89

the classical force field at a transition state. However, these differences then leads to
the underestimate of the activation energy for the (β ↔ C7ax)‡ and (C7eq ↔ C7ax)‡

TS structures from DFT compared to the classical potential.
Throughout this analysis it must be kept in mind that the results from onetep

simulations are fully quantum mechanical and the results from c22vac simulations
are from a classical force field. It would appear that one needs to move to a higher
level of QM theory in order to clarify the energetics of the small molecule around
the transition state. From the current level of QM, the DFT and classical results are
in good agreement close to the energy minima and, crucially, this is where protein
backbones are. It is not always entirely clear whether there are perhaps spurious tran-
sition state structures which appear on the classical potential energy surface which
will not appear on the equivalent quantum mechanical surface. In the Ramachan-
dran plots in Fig. 3 of Ref. [32] where there are either three or four minima present,
depending on which version of the charmm force field is used and there are either
four or five transition states present. In addition, depending on which type of implicit
solvent model is used, within the same charmm version, there are five or six minima
present and either six or eight transition states, depending on the solvation model
used. The Ramachandran (φ, ψ) plots in vacuum also show quantitative differences
for different versions of the charmm forcefield and qualitative differences when
compared to the amber forcefield. In addition, the energetic ordering shown from
classical methods may in fact be skewed by inaccuracies present in the force field.
The main aim of this section was to validate the onetep LST/QST transition state
searching capabilities against a well-studied molecule, dialanine, but in order to pro-
vide some clarity into the issue discussed in Ref. [32], where it is shown that different
classical force fields result in some qualitative and quantitative differences in their
associated potential energy surfaces, further investigations, that remain outside the
scope of this dissertation, will need to be undertaken. This still remains an ongoing
issue but the potential energy surfaces of small molecules is not the primary con-
cern of this dissertation. The focus of this chapter shall now move to another small
molecule, the understanding of which may have far-reaching consequences within
enzymology-related calculations in general.

4.3 Pericyclic Chorismate Rearrangement

Before one can even begin to consider the complexities introduced by explicitly
including the active-site residues and associated protein scaffold in an enzyme reac-
tion, or the solution surrounding the substrate in the equivalent reaction in water,
the structural optimisation procedures in onetep must be validated. The calcula-
tions presented here are intended to validate the geometry optimisation methods and
the LST/QST transition state searching algorithm on the chorismate to prephenate
rearrangement in vacuum. This particular rearrangement takes place both in solution
and in the presence of the Bacillus subtilis chorismate mutase (CM) enzyme but the
focus of this section is on the reaction in the gas phase. The reaction is illustrated in
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Fig. 4.5 Decreasing
calculated RMS force on the
transition state structure
during the
eigenvector-following
optimisation procedure.
Inset: The pericylic Claisen
rearrangement of chorismate
to prephenate

Fig. 4.5. Calculations by other authors on the substrate in the gas phase have found
that many local minima are stable in vacuo but are subsequently unstable in the pres-
ence of the CM active site [37]. A much more detailed description of CM is given
in Chap.6. However, the purpose of this chapter is to determine the accuracy of the
algorithms used in later investigations in this dissertation.

Therefore, rather than searching for globalminima, the optimisation of the reactant
and product state structures is initiatedwith conformations close to the configurations
found within the CM enzyme. As discussed in the previous section detailing calcula-
tions on dialanine, onetep does not include entropic contributions to transition state
activation energies. However, in the rearrangement of chorismate to prephenate it
has been shown experimentally that the entropic contributions are orders of magni-
tude smaller than the enthalpic contributions. Therefore it is likely that the onetep
calculations will yield an accurate description of the reaction.

The associated energy of reaction, yielded following geometry optimisation in
onetep, is −17.0 kcal mol−1 and, following LST and QST searches for the transi-
tion state, the activation energy was determined to be 29.7 kcal mol−1. The energy
of reaction for the chorismate rearrangement was shown to converge with an energy
cutoff of 1020 eV, corresponding to a psinc grid spacing of 0.45 a0, with the NGWFs
localised to a radius of 5.3 Å. Repeating the optimisation process with a 1687 eV
cutoff, corresponding to a grid spacing of 0.35 a0, and NGWFs with a 7.4 Å radius,
showed the energy of reaction is converged to within 0.05kcal mol−1 and the resul-
tant activation energy was converged to within 0.1kcal mol−1. The transition state
structure obtained from LST/QST calculations was then further refined using the
gradient-only version of hybrid eigenvector-following [38–40] using the interface
that exists between onetep and OPTIM, as discussed in Chap.3. However, using
the parameters shown to converge the reaction and activation energies (psinc grid
spacing: 0.45 a0, NGWF radii: 5.3 Å), a geometry with a single negative Hessian
eigenvalue could not be found. This is due to the ‘eggbox’ effect [41–43] which,
as discussed in Chap.3, is important to avoid and the effect is detrimental for the
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gradient-only variant of hybrid eigenvector-following used in the onetep/OPTIM
calculations. The activation energy calculated for the reaction varied significantly
upon translating the atomic coordinates by 0.2 a0, a fraction of the psinc grid size
in use, despite previous successful convergence testing for the size of NGWF radii
and fineness of the psinc grid. However, upon using an energy cutoff of 1687 eV,
corresponding to a psinc grid spacing of 0.35 a0, with the NGWFs localised to a 7.4
Å radius, the activation energy changed by only 0.01kcal mol−1 upon translating the
atomic coordinates by 0.2 a0.

Following convergence testing, the higher cutoff and NGWF radii values were
used in order to converge the eigenvalue and minimise the RMS force on the sub-
strate. The forces generated by using the more rigorous parameters are a much closer
representation of the true derivatives of the total energy. The RMS force on the transi-
tion state is shown to decrease during the eigenvector-following procedure in Fig. 4.5.
This additional eigenvector-following optimisation altered the activation barrier by
less than 0.1 kcal mol−1. The resultant structure following eigenvector-following
yielded an RMSD value of less than 0.01 Å compared to the structure found using
the LST/QST approach. Therefore, this work on the vacuum structure confirms that
the LST/QST approach gives essentially the identical transition state to eigenvector-
following. Furthermore, it is clear that this computationally less expensive method
can be used with confidence on the large systems tackled in Chap.6. It has previously
been found that the LST/QST approach can provide reasonable starting points for
accurate refinement of transition states in small molecule systems [44–47] and this
has been confirmed in the TS searching on the chorismate substrate in this chapter.
What has not been shown in the literature is whether the TS approximant found from
the LST/QST approach can provide a converged activation energy. This will be the
focus of Chap.6 The accuracy achieved by LST/QST for the current problem proba-
bly reflects the simplicity of the pathway. The LST/QST and eigenvector-following
converged transition state was additionally characterised via normal mode analysis
in OPTIM and found to have one imaginary frequency. The gas phase minima were
found to have only real frequencies.

4.4 Summary

The task of describing complex chemical processes, such as those involved in enzyme
catalysis, at the same high level of accuracy as rigorous quantum chemical calcu-
lations on small molecules in the gas phase is a highly active area of research. A
first step toward this goal is the validation of the theoretical methods developed by
applying them to smaller systems that approximate the properties of interest of the
target real systems. In addition, the delicate balance of quantum accuracy along with
computational efficiency must also be obtained. This chapter has demonstrated the
use of density-functional methods for the study of systems of organic and biological
interest, namely ethene, dialanine and the chorismate to prephenate rearrangement.
The results obtained from calculations on ethene yield bond angles and bond lengths

http://dx.doi.org/10.1007/978-3-319-19351-9_6
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in agreement with experiment. It would be prudent to note that it is only the inter-
nal energy of the molecules that is being calculated here. There is no consideration
of entropy in these calculations. In principle it would be possible to calculate the
entropy and subsequent free energy of these molecules by calculating the electronic,
rotational and vibrational partition functions. Computing the vibrational frequencies
required to evaluate the vibrational free energy contribution is much more compu-
tationally expensive compared to calculating the electronic energy alone, though of
course an approximation is possible based on the approximate Hessian generated
during the minimisation procedure. When considering different conformations of
large biomolecular complexes such as proteins or enzymes, there can be large dif-
ferences in the contribution of the entropy to differences in the free energy, so it is
important to carefully choose the system under study such that the entropic contribu-
tions are small or that the only comparisons made with experiment are the changes
in enthalpy.

From the present work on dialanine, onetep DFT structural optimisation yield
bond lengths and angles that agree well with the c22vac classical potential para-
meterised using high-level QM calculations on small molecules. However, relatively
large discrepancies were found in the torsion angles of the transition states, which is
to be expected due to the lack of a rigorous treatment for dispersion interactions in
DFT but is also linked to the deficiencies present in classical force fields in describing
regions away from where they are parameterised.This shows that the resultant coor-
dinates from a parameterised force field can in some instances produce better torsion
angles, but it is also important to use a method incorporating minimal parameters in
the model. This not only allows the model to be transferable but also ensures that
multiple potential energy surfaces are not found from the use of models with differ-
ing parameters, as shown in Ref. [32]. Ultimately, the work on dialanine has shown
the validity of using an approach, such as that utilised in Chap. 6, where the atomic
coordinates calculated from a classical potential are used to act as a protein matrix
to surround an enzyme active site. This will allow QM-based methods to be used
to break and form electron bonds, something that can not be described classically,
and to perform TS searching, whilst the surrounding protein remains in the classical
coordinates and torsion angles.

The work on the chorismate to prephenate rearrangement obtained converged
transition states, found using LST/QST, that were further refined using eigenvector-
following. This additional refinement resulted in the activation barrier changing by
less than 0.1kcal mol−1. It is therefore sensible to use the computationally less
expensive LST/QST method for the large-scale DFT calculations that are the subject
of Chap.6. The systems focussed on in that chapter, and also Chap.5, will be water
clusters, benchmark proteins and a significant portion of an enzyme.

http://dx.doi.org/10.1007/978-3-319-19351-9_6
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Chapter 5
Explaining the Closure of Calculated
HOMO-LUMO Gaps in
Biomolecular Systems

Discovery consists of seeing what everybody has seen and
thinking what nobody has thought.

—Albert Szent-Györgyi (1893–1986)

It is quite alarming that several publications exist in the literature raising serious ques-
tions about the applicability of DFT techniques to large-scale systems such as water
clusters and proteins [1–6]. These investigations have demonstrated that calculated
energy differences between the highest occupied and lowest unoccupied molecular
orbitals (HOMO-LUMO gaps) are vanishingly small, or in some cases non-existent,
for biomolecular systems. Such systems should ideally display insulating behaviour,
if the calculations are to be trusted. These unphysical results are generally attributed
to the treatment of exchange in the density functional used. If true, this would be a
serious impediment to the further application of state-of-the-art DFT techniques to
systems of biological relevance. The work discussed in this chapter indeed confirms
that DFT electronic structure calculations are hindered by vanishing HOMO-LUMO
gaps in large water and protein clusters. However, in contrast to the investigations by
previous authors, the work presented in this chapter conclusively demonstrates that
the issue results not from the choice of density functional usedwithin the calculations
but from improper treatment of the interface between the system under simulation
and the vacuum in which it is contained. It is shown that this produces large, spurious
electrostatic fields, thus closing the HOMO-LUMO gap.

5.1 Introduction

In order to address the issue of vanishingly small HOMO-LUMO gaps, the work in
this chapter provides practical and realistic solutions for ensuring theHOMO-LUMO
gap is maintained as the number of atoms in the system is increased. Some of the
approaches used here in an attempt to prevent the closure of the HOMO-LUMO gap
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include structural optimisation of water/vacuum interfaces using classical methods;
the screening of molecular dipole moments through the use of implicit solvation;
and embedding the quantum mechanical system in the potential of classical point
charges representing the water environment. The biomolecular systems used in this
process consist of protein molecules containing up to 2386 atoms. I believe that
the practical solutions demonstrated here should allow the continued investigation
of complex biomolecular systems through the use of Kohn-Sham DFT. This work
has important implications for the use of large-scale density-functional theory in the
simulation of biomolecular systems, especially where there is crucial dependance on
the accurate calculation of the energy differences between molecular orbitals, such
as in the simulation of photoemission, optical absorption and electronic transport. In
addition, theworkoutlined in this chapter also addresses awidely-heldmisconception
about the unsuitability of applying Kohn-Sham DFT to such systems.

5.2 Vanishing HOMO-LUMO Gaps

Despite the considerable interest in the use of ab initio simulations for the study of
complex biomolecular systems, as mentioned above, there still remains a growing
concern that DFT, in conjunction with pure exchange-correlation functionals (those
defined as containing no Hartree-Fock exchange), may be inappropriate for the sim-
ulation of large molecular clusters. Two of the recent reports that show unphysi-
cal vanishing HOMO-LUMO gaps in systems such as proteins [1] and even water
clusters [3], additionally blame poor convergence during the self-consistent elec-
tronic structure optimisation procedure on this vanishing gap. Poor self-consistent
field (SCF) convergence has been shown both for BLYP and for B3LYP DFT func-
tionals [7] and also for LDA and PBE functionals when simulating large Glu-Ala
helices [8]. In addition, Grimme and co-workers have experienced SCF convergence
problems when performing generalised gradient approximation calculations on large
protein fragments including cation-ion pairs, due to the self-interaction error creating
a vanishing HOMO-LUMO gap [6]. Investigations carried out using the TeraChem
package, with BLYP and B3LYP functionals, to optimise polypeptide structures in
vacuo reported a lack of SCF convergence, caused by self-interaction and delocal-
isation errors giving vanishing HOMO-LUMO gaps, for many of the peptides that
were simulated [2]. Similar problems have been observed when using molecular
fractionation with conjugated caps to compute ab initio binding energies in vacuum
for protein-ligand complexes of between 1000 and 3000 atoms [9].

The SCF convergence issues that have been seen by many in the literature are
widely blamed upon the well-known phenomenon of pure functionals underesti-
mating the HOMO-LUMO gap, within Kohn-Sham DFT, of semiconductors and
insulators [4, 10, 11]. In biological systems Rudberg et al. have shown in Ref. [1]
that these issues result in complete closure of the gap. However, while the lack of the
derivative discontinuity of the exchange-correlation potential at integer particle num-
bers, discussed in Chap.3, and errors in the single-particle eigenvalues resulting from

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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the approximate nature of the functional itself will indeed act to reduce the gap, there
is no inherently obvious reason why the effect should get worse as the system size
increases [10], as reported by Rudberg et al. Furthermore, approximations to energy-
dependent electron self-energies [12], which lie beyond the conventionalKohn-Sham
formalism, need to be improved in order to recover the gap [13]. In addition, problems
in predicting the gap have been linked to the incorrect description of systems that
will contain fractional charges at large separation [14] as discussed in Chap.3. This
prediction of metallic behaviour, in systems that should generally demonstrate insu-
lating characteristics, is concerning. It is clear from previous authors’ work related
to the band gap issue that the use of the Hartree-Fock approach overestimates the
gap whilst hybrid functionals, defined as those that include a certain portion of
Hartree-Fock exchange, often get quite close to experimental values for the gap,
but do not solve the underlying problem of gap closure. In addition, as the size of
the water clusters investigated is increased, all types of functional, both pure and
hybrid, demonstrate a decrease in the gap until eventually it closes entirely. Previous
authors have also shown that recovery of a sizeable gap and consequently robust
self-consistent convergence of the electronic energy levels is possible. Refs. [1, 5]
achieved this by including embedded electrostatic point charges in the system to
represent water molecules around an inner cluster treated with quantum mechanics
whilst Ref. [9] simulated the systemwithin a dielectricmedium. The results therefore
point to the possibility that the vanishing gap is in fact actually a surface effect and,
thus, not an inherent difficulty when performing pure Kohn-Sham DFT calculations.

Within this chapter, the onetep software package has been used to investigate
the HOMO-LUMO gap of water clusters and protein systems. In agreement with
previous work on similar systems performed in Ref. [1] it has been found that,
indeed, the gap often vanishes in vacuo. However, whilst these calculations show
what others have seen before, this work provides conclusive evidence that the issue
is actually not related to the use of a pure exchange-correlation functional at all. It
is, in fact, a result of the approach used to prepare the system in the first place. In
the following sections a number of practical measures for preparing large systems
are outlined. These approaches counter the vanishing HOMO-LUMO gaps seen
in previous works, opening the way for the continued investigation of systems of
biological interest with Kohn-Sham DFT.

5.3 Water Clusters

The correct treatment of water is crucial for accurate and realistic simulations of
biomolecular environments. However, recent large-scale density-functional simula-
tions in Ref. [1] using pure functionals have encountered SCF convergence problems
when simulating isolated clusters of water, due to the HOMO-LUMO gap decreas-
ing to zero when the cluster radius becomes larger than approximately 10 Å. This
vanishing gap phenomenon is discussed in the present chapter and the results from
simulations performed for the current work are summarised in Fig. 5.1. Through a

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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Fig. 5.1 DFT HOMO-LUMO gaps of water clusters of increasing radius extracted from a larger
50 Å cube of water equilibrated at 300 K using classical molecular dynamics. Black line Extracted
straight from bulk water. Blue line After classical minimisations are performed on each extracted
cluster.Red line Simulating the extracted clusters in an implicit solvent model.Dashed lineHOMO-
LUMO gap of bulk water

combination of amber and onetep, the HOMO-LUMO gap of a 2010-atom system
of bulk water was calculated. A periodic supercell of water molecules was gener-
ated using the tleapmodule of the amber package with the tip3p force field. The
Coulomb interactions were then treated using the Particle Mesh Ewald sum, with a
real space cutoff of 10 Å. The cutoff length for the Lennard-Jones interactions was
also set to this distance of 10 Å. The system was minimised in the NVT ensemble
before being heated to a temperature of 300K, in six stages, in the NPT ensemble.
A production run of 5 ns at a temperature of 300K was then performed from which
snapshots were generated and saved at equal picosecond time intervals. Subsequent
calculations on the last snapshot with the onetep code showed a clearly defined
band gap of 4.2 eV. This value is consistent with previous DFT calculations of water
employing the PBE gradient-corrected functional and is what one would expect to
see for a bulk insulator. In addition to bulk water, isolated spherical water clusters
of increasing size have also been investigated. These clusters were extracted from
an initial 50 Å cube of water comprising 14,289 atoms that had previously been
prepared in an identical manner to the 2010-atom system described above.

Recalling the quantum confinement effect, whereby, if the diameter of a material
is of the same magnitude as the wavelength of the electronic wave function, then
the electronic and optical properties can deviate substantially from those of bulk
materials, onewould generally expect to see theHOMO-LUMOgaps of these clusters
as being larger than that of bulk water. Onemight also expect the HOMO-LUMOgap
value to tend toward the bulk value as the size of the system was steadily increased.
However, in agreement with Ref. [1], Fig. 5.1 (black line) shows that the HOMO-
LUMO gap quickly approaches zero for systems containing more than around 200
atoms. It is this observation that has led many to question the applicability of pure
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Fig. 5.2 Rearrangement of water molecule orientation to maximise hydrogen-bonding and to min-
imise the electrostatic energy

DFT functionals to large systems, such as water clusters and proteins [1, 2, 5, 6,
9]. However, the results demonstrating the insulating nature of very large periodic
supercells of bulk water indicate that the problem is not the size of the system in itself
but rather, the small HOMO-LUMO gap is in fact caused by the interface between
the water and the surrounding vacuum introduced by the cluster. To understand this
further, one must look more closely at the properties of bulk water. Bulk water
consists of a continuous hydrogen-bonded network of water molecules; there is a
dipole moment associated with each water molecule. The process for preparing the
water clusters, which involves extracting a cluster, freezing the atomic positions
and surrounding with vacuum, can potentially result in a large surface dipole being
created. As a rough estimate, if one considers the dipole moment of a single isolated
water molecule to be on the order of 0.73 e.a0 then this will produce a potential
difference of around 0.4V between opposing points of some sphere of radius 5 Å
with the water molecule located in the centre of the sphere. In general, the molecular
dipoles within the cluster are orientated in such a way as to mostly cancel out any
long-ranged effects, as is illustrated in Fig. 5.2, however, those dipoles on the surface
of the sphere are not compensated by their neighbours. Therefore, depending on the
orientation of these dipoles around the surface of the entire cluster, a large cluster
may retain a large net dipole moment. In order to test this hypothesis, clusters were
extracted from the 14,289-atom cube and their associate classical dipole moments
were calculated. A tip3p point charge model was used for the water and Fig. 5.3a
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Fig. 5.3 a Average dipole moments of water clusters of increasing radius calculated using the
tip3p point charge model. Green line Averaged over 5000 snapshots extracted from a larger 50 Å
cube of water. Blue line Averaged over 1400 snapshots extracted from the bulk and minimised
using an MM force field. b Quantummechanically calculated total dipole moment of water clusters
of increasing radius. Black Line onetep-calculated QM dipole moment from the final molecular
dynamics snapshot at each radius. The dipole moment increases with radius in the same manner as
in our classical simulations. Blue line onetep-calculated dipole on the same snapshot after classical
minimisation, which reduces the dipole moment across the cluster. Red line onetep implicit solvent
calculations. In this case, the dielectric medium supports a higher dipole moment, although the net
potential is screened at large distances

(green line) shows the classical dipole moment of the water clusters averaged over
the 5000 snapshots from the molecular dynamics simulations. These results reveal
that the dipole moment increases with system size as the created surfaces become
larger in area. A similar trend in the dipole moment with cluster size is observed for
QM calculations of single snapshots as can be seen in Fig. 5.3b.

To see whether these large dipole moments can cause the closure of the gap,
one must also consider the potential due to the dipoles which is generated from the
effective surface charge produced. In order to comprehend this, one must consider
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Fig. 5.4 Schematic figure to
illustrate that a uniform array
of identical dipoles is
equivalent to a surface charge

a uniform array of identical dipoles between two surfaces such as that illustrated in
Fig. 5.4. Internally, the heads and tails of the dipoles will be adjacent and thus will
cancel, however, at the bounding surfaces, no such cancellation occurs. Instead, on
one surface the dipole heads create a positive surface charge, whilst at the opposite
surface the dipole tails create a negative surface charge. These two opposite sur-
face charges create a net electric field in a direction opposite to the direction of the
dipoles. To illustrate this effect further, the electrostatic potential calculated from
density-functional simulations is plotted on a plane behind the 16 Å water cluster in
Fig. 5.5a. The DFT-calculated electrostatic potential clearly reveals a dipolar poten-
tial. Now that one can see that water clusters that are extracted from equilibrated bulk
periodic calculations display largemultipole moments, as measured both byMMand
QM, the natural next question to ask is what effect does this have on the computed
HOMO-LUMO gap? One approach to answering this question would involve cal-
culating the density of states (DoS) of the water cluster. More specifically, the local
density of states (LDoS) will give us a more localised picture of what is happening.
Figure5.5a also shows the LDoS for a 16 Å water cluster, alongside the DFT elec-
trostatic potential. In order to determine the LDoS, the water clusters are nominally
divided into 10 slabs in a direction perpendicular to the dipole moment. Then the
slab local density of states is defined as the sum of the contributions to the total DoS
from the local orbitals centered on the atoms within each slab. The plot in Fig. 5.5a
displays a clear shift in the LDoS as a function of the position along the dipole
moment vector. This shift is due to the electric field pushing some states higher in
energy and some states lower in energy. This effect can be considered as analogous
to the concept of Fermi-level pinning found in polar semiconductor nanorods [15,
16]. In that particular case, the Fermi energy coincides with a finite density of states
at either end of the rods. In the case of the water clusters the Fermi energy coincides
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Fig. 5.5 Electrostatic potential for a water cluster of 16 Å radius and local density of electronic
states (LDoS) for groups of atoms as a function of position along the dipole moment vector of the
cluster. The dipole moment vector (coloured arrow) runs from the red line to blue. The black line
is the total density of states (DoS) and the green dashed line is the DoS for bulk water. Each line
in the LDoS plot is normalised by the number of molecules contained in the slab. The electrostatic
potential ranges from –0.3 V (red) to +0.3 V (blue). The slice is 24.6 Å behind the water cluster. a
Snapshot extracted from bulk water. The dipole moment is high, the LDoS is strongly dependent
on position relative to the dipole moment vector, and the total range of states is much wider than
for bulk water. b After classical minimisation of the same snapshot. c Simulated using the onetep
implicit solvent model. In both cases, the dipole moment is reduced and the DoS closely resembles
the bulk
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with a non-zero DoS on opposite surfaces of the extracted sphere.When the radius of
the water cluster increases such that the surface potential is of sufficient magnitude
to bridge the HOMO-LUMO gap, it would be expected that the gap will disappear
completely. Given the apparent electrostatic nature of the vanishing HOMO-LUMO
gap, it would make sense to postulate that there is no fundamental problem in the
use of pure density-functionals in the simulation of large systems, but simply that
the issue manifests itself at smaller system sizes than it would do for hybrid func-
tionals which have an inherently larger gap. It would therefore be expected that any
method that corrects for these surface effects will also restore the HOMO-LUMO
gap, which is consistent with observations made by other authors. By embedding the
system in a set of classical point charges outside the electron distribution to repre-
sent, for example, the aqueous environment of the water or protein cluster, work in
Ref. [1] has shown that the HOMO-LUMO gap may be restored. In these particular
cases there were no significant changes seen to occur to the electronic density of the
inner water molecules. In the work presented in Ref. [5], the only significant changes
in electronic density were observed on the water molecules that were close to the
surface of the cluster. The investigation reported in Ref. [9] also found that the use
of a dielectric medium with permittivity ε = 4 leads to robust self-consistent field
convergence of proteins in vacuum, therefore this approach implies that screening of
the surface dipole is sufficient to restore the HOMO-LUMO gap. In the remainder
of this chapter a number of methodologies for setting up a QM cluster are tested and
are shown to allow density-functional calculations to be performed using either pure
or hybrid functionals, without closure of the gap, so that the ensuing results are accu-
rate and realistic. The electric field across a water cluster will be reduced if the atomic
positions are allowed to relax, either by some formof structural optimisation or a sim-
ulated annealing procedure. The particular form of geometry optimisation applied to
thewater clusterswas fast conjugate gradient (CG)optimisation followedbyNewton-
Raphson (NR) minimisation until the root mean square force decreased below 10−4

kcal mol−1 Å−1 during CG minimisation and below 10−10 kcal mol−1 Å−1 for NR
minimisation. This substantially reduced the average dipole moment of the extracted
water clusters, asmeasured using classical tip3ppoint charges. The effects of the opti-
misation can be seen in Fig. 5.3a (blue line). In addition, Fig. 5.1 (blue line) reveals
that clusters that have undergone MM minimisation all have their HOMO-LUMO
gaps restored to values close to the bulk water value of 4.2 eV. It is also expected
that an implicit solvation model will reduce this observed shift in electronic states
on opposite surfaces of the sphere by screening the electrostatic potential across the
entirety of the cluster. It can be seen in Fig. 5.1 (red line) that when the extracted
water clusters are simulated with implicit solvent using onetep, the HOMO-LUMO
gap is again restored to the value found in bulk water. In panels (b) and (c) of Fig. 5.5
it is shown that following classical minimisation the dipolemoment of the 16Åwater
cluster is significantly reduced and the associated electrostatic potential is negligible
when simulated in the dielectric medium. For both the case of classical minimisation
and the use of implicit solvation, the local density of states is much less dependent
on position along the dipole moment vector and it much more closely resembles the
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bulk density of states, shown in Fig. 5.5 (green dashed line), as should be expected
for a large water cluster.

5.4 Protein Systems

The problems of vanishing HOMO-LUMO gaps are not only found in water but
also in biomoleclar systems Therefore, the next area of focus must be on proteins,
to ensure that the computational approaches used are reliable and that the results
being produced are accurate and trustworthy. In order to investigate the claims
made in Ref. [1], six protein conformations: methionine-enkephalin (1PLW) [17],
the RGD peptide (1FUL) [18], transthyretin (1RVS) [19], the third intradiskal loop
of bovine rhodopsin (1EDW) [20], the seventh transmembrane helical domain of
bovine rhodopsin (1FDF) [21] and ubiquitin (1UBQ) [22], were accessed from the
Brookhaven National Laboratory Protein Data Bank (PDB) [23] as starting config-
urations for the calculations. With regards to the specific onetep parameters used
in both these and the water cluster calculations presented in this chapter, an energy
cutoff of 916 eV was used, corresponding to a psinc grid spacing of 0.475 a0. The
NGWFs were localised in real space with radii of 5.3 Å. For the case of the 1PLW
protein, upon increasing the NGWF radii from 5.3 Å to 6.4 Å, the calculated HOMO-
LUMOgap was found to be converged to within 3 meV. Repeating these calculations
at an energy cutoff of 1020 eV, corresponding to a grid spacing of 0.45 a0, the calcu-
lated HOMO-LUMO gap was converged to within 6 meV. The NGWFs in onetep
are optimised in situ to represent the valence states, however, previous experience
shows that these NGWFs describe the conduction states well for at least the first
1 to 2 eV above the LUMO and thus produce the same level of gap as equivalent
plane-wave calculations. At energies beyond this point, however, work reported in
Ref. [24] shows that the density of states is not well-represented by NGWFs and
should be discounted.

In the instance that a set of starting configurations that had been obtained from
the PDB had more than one conformation available, the structure labelled as ‘model
1’ was used in each case. It is worth noting that these coordinates are resolved from
NMR investigations and so give the positions of the hydrogen atoms. Therefore, with
no prior preparation, the coordinates extracted from the PDB were placed straight
into a calculation in onetep in vacuo. The computed HOMO-LUMO gaps for these
structures can be seen in Table5.1. As would be expected for this method of system
preparation (or lack thereof !), the simulations did not produce finite HOMO-LUMO
gaps and so therefore did not converge for any of the proteins apart from the smallest
system thatwas studied. In plotting theDFT electrostatic potential far from the 1UBQ
protein, a strong dipole moment is revealed, as can be seen in Fig. 5.6a. It is also
clear from the local density of states in Fig. 5.6b that a number of electronic states
for the protein are close to the Fermi level. Clearly the problem of the vanishing
HOMO-LUMO gap is very similar in nature to that found in water clusters. Other
authors have also since shown that the number of protein electronic states close to
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Table 5.1 HOMO-LUMO gaps for a range of proteins from the PDB

PDB ID Atoms Charge HOMO-LUMO Gap/eV

in vacuo QM water Implicit
Solvent

QM/EE

1PLW 75(456) 0 0.0 3.7 3.7 3.5

1FUL 135(453) –1 n/a 2.7 2.6 2.6

1RVS 172(670) 0 n/a 3.4 3.7 2.9

1EDW 399(978) –1 n/a 3.1 3.7 2.6

1FDF 419(1526) 3 n/a 1.9 3.3 1.6

1UBQ 1231(2386) 0 n/a 2.6 3.4 2.4

Atom number in parentheses includes a 5 Å solvation shell of water used in classical minimisation
and QM/EE simulations. Systems that did not converge are indicated by n/a. Vacuum calculations
and implicit solvent simulations did not include any explicit water molecules

the Fermi level can be reduced by simulating the protein in a dielectric medium [25].
Perhaps some clarity can be gained from stepping back a little and thinking about
protein characteristics from a broader viewpoint.

When considering the general properties of protein secondary structure, all the
backbone hydrogen bonds in an α-helix point in the same direction. This is due to the
fact that all the peptide units are aligned in the same orientation along the helical axis.
A peptide unit has a well-defined dipole moment, arising from the differing polarity
of the N−H and the C′−O groups and the partial double bond character of the N−C
bond [26]. The accepted value for the dipole moment of the individual peptide units
is around 0.9 to 1.3 e.a0 [27]. Around 97% of the peptide dipole moments point in the
direction of the helical axis and this percentage is insensitive to the dihedral angles
[28]. The amino terminus has a partial positive charge and the carboxyl terminus has
a partial negative charge. Therefore, the overall effect on the resulting α-helix is a
significant net dipole, which to a first approximation one can deduce as being equal
to N × 1.1 e.a0 for N residues [29]. The most common location for an α-helix in a
protein is on the outside of the structure, where one side will face the hydrophobic
interior of the protein and the other will face the solution [30]. The α-helices that are
not part of an enzyme active site, or a protein binding site in general, will often have a
negatively charged side-chain at the amino terminus or a positively charged residue at
the carboxyl terminus. These dipole-compensating residues act to stabilise the helical
form of the peptide in solution. In addition to these stabilising residues, for a protein
solvated in aqueous solution, the effective dipole of an α-helix will be reduced as
a result of solvent screening of the peptide group charges. The solvent generates a
reaction field that acts against the field generated by the vacuum dipole, leading to the
screening and effective lowering of the dipole moment [31]. When calculating these
structures in vacuo, due to a lack of electrostatic reaction field that was generated by
the solvent, the strength of the α-helix dipole, when compared to aqueous solution,
may increase drastically [32]. The most significant factor in this increase in dipole
moment is likely to be charged side chains such as solvent-exposed Arg, Lys, Glu and
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Fig. 5.6 Electrostatic potential and local density of states (LDoS) for groups of atoms as a function
of position along the dipole moment vector (coloured arrow) of ubiquitin. The dipole moment
vector runs from red to blue. The black line is the total density of states. Each line in the LDoS plot
is normalised by the number of molecules contained in the slab. Panel a shows the experimental
structure with no solvation and the electrostatic potential ranges from –0.2 V (red) to +0.2 V (blue).
The slice is 42.9 Å behind the protein. Panel b shows the LDoS along the dipole moment of the
same protein structure, this time after having been simulated with implicit solvent

Asp. As described in Chap.2, these residues are generally charged in physiological
conditions at pH 7. When simulated in vacuo these residues are unscreened and,
without correction, the α-helix dipole moment due to these untreated side chains
will be large, causing an undesired shift in the surface electronic states. It has also
been found that when in aqueous solution the effective dipole moment is found to
have a strong dependence on the position and orientation of the helix with respect to
the solvent. It is of note that additional secondary structure motifs such as β-sheets
carry comparatively little dipole moment. However, in calculations, the surrounding
solvent must be treated with care otherwise spurious and unphysical effects are likely
to arise.

In an attempt to recover the expected HOMO-LUMO gaps in proteins, similar
techniques to those described in the previous section have been used. The protein
structures were solvated in a 50 Åwater cube using the tip3p force field and all of the
protein interactionswere described using theamber ff99SBbiomolecular force field.
NVT minimisation was initially performed on the system before equilibrating in the
NPT ensemble up to a temperature of 300K in six equal steps. A 5 nsNVTproduction

http://dx.doi.org/10.1007/978-3-319-19351-9_2
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run was then performed in order to generate the final structures. Throughout the
minimisation, equilibration and production runs, harmonic constraints of 100kcal
mol−1 Å−2 were imposed upon the protein structure. Following these runs in a
50 Å water cube, the majority of the water molecules were stripped from the system.
5 Å of the surrounding water molecules were retained from the simulations for each
protein. The solvent geometry was then optimised via fast conjugate gradient (CG),
followed by Newton-Raphson (NR) minimisation, until the root mean square force
decreasedbelow10−4 kcalmol−1 Å−1 duringCGminimisation andbelow10−10 kcal
mol−1 Å−1 for NR minimisation. During this process the protein residues remained
constrained. The resulting protein configurations were used as the starting vacuum
conformations for onetep calculations.

Following classical minimisation on the 1FDF structure in vacuo, the electronic
structure calculation again failed to converge. The calculations thus have shown that
whilst classical optimisation is able to restore the HOMO-LUMO gap for water clus-
ters, this approach is unsuitable for proteins. This result can be understood from the
fact that the protein residues are fixed in their secondary structure conformations.
This constraint results in much less opportunity for the structural mobility of pro-
teins in general, especially when compared to water. In order to proceed beyond the
methods used to successfully recover the HOMO-LUMO gap of the water systems,
a more effective strategy will be to include the effects of the protein environment
through the use of explicit water molecules or, the computationally less intense,
implicit solvation. Either approach should screen the effect of the charged residues
within the system.

The first step is to take each protein structure that has been solvated by the clas-
sically minimised 5 Å layer of water and simulate them in onetep using full DFT
for the entire system, up to a maximum system size of 2386 atoms, in order to re-
calculate the electronic structure. Calculations using implicit solvent have also been
performed for the protein structures in their vacuum configurations. The strategies
of using either explicit or implicit solvation both restore the HOMO-LUMO gaps to
similar values. It can be seen in Fig. 5.6b that the density of states for the implicitly
solvated system resemblesmore closely that of an insulator. Asmentioned inChap.3,
by representing the explicit water layer by embedded point charges through the use of
a tip3p charge distribution and removing the water molecules from the calculation,
the computational costs associated with a calculation can be dramatically reduced.
To explore whether this approach retains the correct gap the explicit water layer sur-
rounding the protein conformation has also been removed and, instead, represented
by embedded point charges with a tip3p charge distribution. In this instance, the cal-
culatedHOMO-LUMOgap is restored to a value very similar to that of the simulation
using a full QMwater layer. This result shows that classical charges can indeed repro-
duce the correct electrostatic environment. Overall, Table5.1 reveals that the use of
implicit solvent largely produces a HOMO-LUMO gap that is of greater magnitude
than when an explicit water layer is considered or embedded charge distributions
are used. The significant outliers are shown in the QM water and QM/EE gap values
for the 1FDF protein. It is likely that these particular methods struggle with the net
charge of+3e, indicating that in such systems where there is a significant net charge,

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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an implicit solvent approach must be used. Furthermore, these discrepancies in the
gap values are more pronounced as the system sizes increase. The use of explicit
QM water manages to produce significant gap values up to the mid-range of the
systems in this study but Table5.1 shows that for larger systems it is necessary to
use the computationally more expensive implicit solvent model. As an additional
viable alternative to restore the calculated gap, charged residues within the 1FDF
protein are mutated to alanine, and any charged groups of the N- and C-terminus are
hydrogen-capped. Alanine is used because of its non-bulky, chemically inert, methyl
functional group that adequately mimics the secondary structure preferences that
many other amino acids possess. The calculated HOMO-LUMO gap increases by
1.3 eV, using this technique, after the original calculation on the unmodified structure
failed to generate sensible eigenvalue occupancy. This is achieved by reducing the
spurious dipole moment caused by the vacuum-exposed charged residues.

5.5 Summary

This chapter has confirmed recent findings fromRef. [1] thatDFT electronic structure
optimisation can be hindered by vanishing HOMO-LUMO gaps in large water and
protein clusters, systems that should, in fact, display insulating behaviour. This prob-
lem has been shown to manifest itself in clusters prepared with improper treatment
of the interface between the system and the surrounding vacuum. From the exam-
ples presented in this chapter it has been shown that unequilibrated vacuum/water
interfaces combined with X-ray protein crystal structures taken straight from exper-
imental repositories can exhibit strong molecular dipole moments. The present work
onwater has shown that starting from a continuous polar substance,where eachmole-
cule has a fairly large dipole moment, the randomly arranged network of dipoles will
then rearrange in order to minimise the electrostatic energy. The protocol used in
this chapter involved extracting a cluster from a larger classical simulation, or in
the case of the proteins, simulating an entire structure using the experimental coor-
dinates obtained from NMR or X-ray. This process of extracting a smaller cluster,
freezing the atomic positions and surrounding with vacuum, results in a large surface
dipole being exposed. Larger and larger extracted clusters have surfaces further apart
which results in increasing net dipole moments due to the larger surface areas. The
spurious electric fields associated with these unphysical dipole moments will reduce
the HOMO-LUMO gap by raising the energies of the electronic states on one side
of the cluster and lowering the energies of those on the other side. Depending on the
value of the local electric field, a large enough cluster will have the HOMO-LUMO
gap closed completely.

By investigating the local density of states of these systems, decomposed into
slabs along the direction of the molecular dipole moment, it has been proved that the
energies of the electronic states are shifted by the electric field generated across the
cluster. This then results in the Fermi energy being pinned by states on opposite sur-
faces of the water cluster, leading to the HOMO-LUMO gap closing, something that
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should not happen for these structures. Whilst, in the literature, this effect is widely
associated with the use of the PBE gradient-corrected functional, the results pre-
sented here emphasise that this effect should not be particular to the PBE functional
used in these calculations. Previous authors have shown that hybrid functionals tend
to have an intrinsically wider gap and Refs. [2, 9] have demonstrated that calcula-
tions, for systems comprising thousands of atoms, implementing those functionals do
converge. However, it is expected that, even for functionals containing Hartree-Fock
exchange, the HOMO-LUMO gap is still likely to close upon increasing system size
at the time when DFT methodological advances allow such access to larger systems.
The development of linear-scaling functionals with accurate Hartree-Fock exchange
is a current area of research [33]. With such methods available it would be prudent to
test the HOMO-LUMO gap dependence on increasing system size for the particular
cases outlined in this chapter.

Practical solutions for restoring the HOMO-LUMO gap in water clusters and pro-
tein systems have been demonstrated in this chapter. The methodologies used have
ranged from classical structural optimisation of the interfaces between water and
vacuum, to the screening of molecular dipole moments through the implicit solva-
tion of protein structures. It has been shown that implicit solvation seems to give
the best correspondence between the HOMO-LUMO gaps of large isolated explicit
water clusters and that of bulk water obtained in periodic calculations. The use of
implicit solvation techniques also restores larger HOMO-LUMO gaps for proteins
to a greater extent than when 5 Å of the surrounding water molecules, retained from
bulk periodic simulations, are explicitly simulated. The systems investigated here
comprised up to 2386 atoms and the practical solutions demonstrated in this chapter
have implications for the remainder of the dissertation as they show that the proposed
methodologies for treating biomolecular structures will generate sensible and reli-
able results. It has also been shown that the use of classical charges can reproduce
the correct electrostatic environment, and hence restore the HOMO-LUMO gap,
whilst also significantly reducing the computational cost of the simulation, com-
pared to using explicit QM water. This has positive implications for future DFT
studies of biomolecular systems, as the computational costs can be reduced by such
approaches. However, of more immediate importance is the fact that the next chapter
relies heavily on this approach in order to reduce the computational costs for large
clusters of water molecules undergoing full-DFT structural optimisation. Therefore,
the results presented in this chapter instil confidence in the approach used in the
next chapter. The calculations presented here could be further extended to systems
such as the myoglobin protein (PDB ID: 1A6N) to investigate whether other purely
quantummechanical phenomena, such as the spin states on an iron ion, will be better
described compared with experimentally resolved structures as a result of following
the classical structural optimisation procedures discussed in this chapter. Another
potential application area of impact could be the spectroscopy of proteins, where the
HOMO-LUMO energy levels of central pigments are crucial [25, 34]. In general,
I am hopeful that the insights from the investigation presented in this chapter will
be a small contributor toward allowing the continued modelling and simulation of
biomolecular systems through the use of Kohn-Sham DFT. One such system, where
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there is additional complexity to the protein structure, is an enzymatic reaction in
which a small molecule is undergoing some chemical reaction catalysed by the sur-
rounding protein structure. Such a system is the focus of the next chapter.
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Chapter 6
A Density-Functional Perspective
on the Chorismate Mutase Enzyme

You can never cross the ocean unless you have the courage to
lose sight of the shore

—Christopher Columbus (1451–1506)

The last two decades have witnessed the continual and concerted effort toward the
development of powerful tools which allow DFT calculations to be efficiently per-
formed for systems containing thousands of atoms. The challenge of performing
quantum mechanical simulations on such large systems is not just the computational
cost of a calculation for, say, a 1000-atom system, but also the fact that such large
systems have complex free energy landscapes thus significantly increasing the num-
ber of calculations needed to extract meaningful predictions of the properties of
such systems. The efficiency of the linear-scaling DFT code onetep, along with sig-
nificant associated computing resources, allow real science to be performed, rather
than simply allowing a small number of single-point energy calculations to be per-
formed, whichwould be the case if conventional cubic-scalingDFT codes were used.
A key aim in this chapter is to calculate an activation and reaction energy for the
conversion of chorismate to prephenate, catalysed by the Bacillus subtilis choris-
mate mutase (CM) enzyme, which is fully converged with respect to the size of the
system. In doing so, a powerful proof-of-principle demonstration of the predictive
power of DFT calculations in biology will be demonstrated, which will, hopefully,
in turn, provide a very powerful push for the adoption of first-principles modelling
techniques within biologically-relevant disciplines. In this context, it is worth noting
that it was successful Grand Challenge applications in the early 1990s that led to
the widespread adoption of DFT within the physical sciences. It is my impression,
garnered from experts in the field with much more experience than I, that we are
very close to a similar tipping point for the adoption of DFT in biology. However, for
this to take place it will require the successful demonstration of proof-of-principle
Grand Challenge applications such as accurate simulations of an entire enzyme.

© Springer International Publishing Switzerland 2015
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It is my hope that the calculations presented in this dissertation will serve as a
modest foundation for the further pursuit of such milestones within biomolecular
simulation.

On the specifics of the work included in this chapter, a benchmark study on a large
portion of theCMenzymeusing linear-scaling density-functional theory is discussed.
As outlined in Chap.3, treating the entirety of an enzyme with conventional QM
approaches is largely unfeasible due to computational demands, so hybrid QM/MM
methods are often applied instead. A recent QM/MM study has identified reaction
pathways for the rearrangement of chorismate to prephenate in solution and catalysed
byCM[8].However, due to the advances in linear-scalingdensity-functionalmethods
outlined in Chap.3, it is now possible to apply these approaches to accurately predict
transition state geometries and energetics through treating a system of thousands of
atoms at the fully quantum mechanical level. QM/MMmay suffer from inaccuracies
introduced by using classical force fields and from the coupling scheme used to link
the two regions. However, a full-DFT approach will allow a comparison to be made
with hybridmethods to investigate these inaccuracies. Through the use of the onetep
code, large-scale DFT calculations are performed on structures taken from the CM
pathways in Ref. [8], in order to address the convergence of energies of activation
and reaction with respect to the total size of the fragment considered.

6.1 Introduction

The CM enzyme is relatively simple, but has still managed to generate much contro-
versy and debate amongst enzymologists, despite just catalysing a one-step pericyclic
reaction. The enzyme catalyses the Claisen rearrangement of chorismate to prephen-
ate, the gas phase version of which has been discussed in Chap.4. Within the larger
scheme of the biological process, the reaction is situated at a branch point in the
shikimate metabolic pathway [28]. This particular pathway is crucial for generating
the aromatic amino acids phenylalanine, tyrosine and tryptophan. In terms of prac-
tical applications, it has been shown that herbicides that inhibit the biosynthesis of
amino acids prove to be very useful tools within the weed management industry.
The particular success of these types of herbicides has been due to their low toxicity
in mammals, in other words, these herbicides inhibit pathways that are lacking in
mammals. There are now several types of herbicides used within the industry with
primary targets, or sites of action, that are associated with the targeted and specific
inhibition of enzymatic activity within biosynthetic pathways for amino acids [66].
As discussed in Chap. 3, synthesised molecules which act as transition state ana-
logues are competitive inhibitors of enzyme activity, binding more tightly to the
active site than the natural or expected substrate in the reaction. A major difference
with designed transition state analogues is that the dissociation rate will be orders
of magnitude slower. Therefore, once the synthesised molecule binds, the enzyme is
essentially inactivated. Such an analogue has been synthesised for the CM enzyme
[4] and has been used to crystallise the enzyme [6]. The deregulation of the shikimate

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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pathway results in the accumulation of very high levels of shikimate and shikimate-3-
phosphate, and in some plant species this accumulation can account for up to around
16% of plant dry weight in sink tissues, where the products of photosynthesis are
used or stored. Important building blocks for other metabolic pathways are also
reduced by uncontrolled carbon flow through the shikimate pathway and reduced
levels of aromatic amino acids cause a significant reduction in protein synthesis. It
has been shown that the shikimate pathway exists only in fungi, bacteria and higher
plants [63]. Therefore CM inhibitors may be useful in the development of herbicides,
fungicides and antibacterial therapeutics [4] with low toxicity. Work investigating
catalysiswithinCMmay then be able to elucidatemore general principles of catalysis
and TS analogue binding that can then be harnessed in order to understand further a
variety of other enzymes.

A key factor in why CM has undergone much study, both through computation [8,
10, 16, 45, 56] and experiment [2, 6, 7, 19, 22, 23, 25, 35, 37], is the fact that there
is no covalent bonding between the substrate and the enzyme active-site residues [22,
23, 25, 35, 37]. This can be seen in Fig. 6.1. It is this characteristic of the enzyme
that has led the majority of researchers in the field who are treating the enzyme
computationally, to do so using QM/MM whereby the substrate is treated with a
quantum mechanical method and the active site and surrounding enzyme residues
and water molecules are treated with a classical molecular mechanics approach. In
addition, it has been shown that the reaction also takes place in aqueous solution,
with a similar mechanism [2]. Such an observation allows a direct comparison of
the reaction in the two environments. Therefore, the catalytic enhancement of the
enzyme can be calculated via simulation and directly compared with experimental
observations. Experimental investigations have found the enthalpy of activation to be
lowered from 20.71 ± 0.35kcal mol−1 in a water environment [2] to 12.7 ± 0.4kcal
mol−1 in the presence of the CMenzyme [35]. This lowering of the activation barrier,
in going from one environment to another, translates to a catalytic enhancement to
the reaction rate of approximately 106. The enthalpy of reaction in water has been
shown, via calorimetric measurements, to be equal to –13.2 ± 0.5kcal mol−1[37].
The QM/MM study detailed in Ref. [8], of the reaction both in enzyme and solution
environments at the B3LYP/6-31G(d)/charmm27 level of theory, yielded activation
energies of 17.4 ± 1.9kcal mol−1 in water and 11.3 ± 1.8kcal mol−1 in enzyme. To
have a greater understanding of the accuracy of these simulations and to place them
within historical context, these results are in much closer agreement with exper-
iment than the first reported QM/MM study of the CM enzyme [45]. This early
work of Ref. [45] gave an activation barrier of 17.8kcal mol−1 in enzyme at the
AM1/charmm27 level of theory, giving somewhat of an overestimate of the reac-
tion barrier. However, more recent work detailing a QM/MM investigation of the
reaction in enzyme yielded an activation energy of 1.4kcal mol−1[27]. This study
used the same initial X-ray structure as Ref. [8] and prepared it in the same way. The
QM region comprised 24 atoms and was treated at the B3LYP/6-31G(d) level, again
identical to the approach adopted in Ref. [8]. Where the investigations differ is in
the classical methods used to describe the MM region of the simulations. Ref. [27]
treated 4117 atoms of the surrounding enzyme and water molecules with the amber
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Fig. 6.1 Rearangement of
the substrate (magenta) from
chorismate to prephenate
within the CM active site
(yellow) and surrounding
protein (grey) in the a
reactant, b transition state
and c product conformations
from DFT-optimised
structures
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4.0 force field, whereas in Ref. [8] the charmm27 force field was used to describe
7053 atoms of the environment. Results such as those in Ref. [27] demonstrate the
range of estimates available for QM/MM calculations. This underestimation of the
experimentally observed barrier by an order of magnitude highlights the importance
of careful path sampling and potentially indicates the differences in results that can
be obtained from the use of differing parameterisation sets available in different force
fields. This is only a whistle-stop tour of the notable CM investigations present in
the literature but a broad survey of CM simulations can be found elsewhere [56, 58].

As outlined in Chap.3, a central theme of this dissertation is to attempt to make
simulation approaches and their associated resultsmore accessible to non-specialists.
This will allow computational enzymology to have impact in other scientific com-
munities. I feel that the present exploratory work contained within this chapter also
contributes to this aspiration as it removes the additional complexity inherent in the
selection of force field parameters and of choosing a QM/MM boundary partitioning
scheme. The motivation for treating atoms beyond that of the CM substrate with
QMmethods stems, in part, from mutagenesis experiments that demonstrate the sig-
nificant role the Arg90 residue, illustrated in Fig. 6.1, plays in catalysis within the
CM enzyme [11]. The experimental findings fromRef. [11] corroborated predictions
from prior theoretical work [26, 45] and agreed with the expected outcomes from
previous experimental proposals [21, 35]. In addition to these investigations, com-
putational studies have been shown to demonstrate the significant involvement of the
Glu78 and Tyr108 sidechains [64] along with the Arg7 charged residue [39] within
CM catalysis. Activation energies have been shown to change by just 1kcal mol−1

upon including the charged residues Glu78 and Arg90, along with the substrate, in
the QM region, compared to only including the substrate, at the PBE/DVZP/amber
level [16]. However, within the same calculations, amuchmore significant difference
in reaction energy of 5.7kcal mol−1 was observed. This result not only displays the
difficulties involved in calculating a converged reaction energy within this reaction
but it also indicates that a larger QM region will be needed at that level of the-
ory in order to converge the calculated reaction energy. Furthermore, studies at the
AM1/charmm27 level of theory that included the same additional charged residues
as Ref. [16], found a change of 3.1kcal mol−1 in the activation energy [39]. It has
been proposed that polarisation in the neighbouring charged residues and the asso-
ciated charge transfer from the substrate to the active site may be important for
catalytic activity in CM [39, 64]. As the fixed charge approximation is generally
assumed within force field approaches, and QM/MMmay encounter the problem of
electron leakage, as discussed in Chap.3, the behaviour proposed in Refs. [39, 64]
may not be accurately described by the previous approaches used by other authors.
In addition, coupled-cluster calculations performed in Ref. [10] on the active site
of CM have demonstrated that by increasing the total size of the system from only
the substrate to also include 4 active-site residues—namely Arg7, Arg63, Glu78 and
Arg90—surrounding the substrate, changes the activation barrier by around 0.7kcal
mol−1. However, as this is the largest system size accessible with coupled-cluster

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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approaches, the study provides a very limited test of convergence of energies with
respect to the size of the QM region. Ultimately, it is unclear whether the computed
value of the barrier will continue to change upon the addition of further active-site
residues.

Chapter 3 discusses the fact that conventional QMmethods incur a computational
cost that typically increases as the third, or greater, power of the number of atoms
in the system. Nevertheless, an increasingly viable alternative approach to QM/MM
schemes is to perform QM calculations on a significant portion of an enzyme. Pre-
vious authors have taken CM enzyme structures, which have been optimised at the
RHF/6-31+G(d,p)/amber level of theory, and have performed single-point energy
calculations at the all-electron quantum chemical level, using the fragment molecular
orbital (FMO) method [32]. The Effective FMO (EFMO) method has also been used
to investigate CM [59], yielding averaged enthalpies of activation and reaction. The
activation barrier overestimates experiment by 5.5kcalmol−1. The energy of reaction
was found to be strongly basis set-dependent, varying from –5.5 to a positive value
of 0.8kcal mol−1, in contrast with many predictions from other levels of theory of
a very exothermic reaction. Within the EFMO approach, an active region is defined
as the active site of the enzyme, in a similar manner to that of QM/MM simulations.
Reference [59] reports a doubling in computational costs upon increasing the number
of atoms in the EFMO active region from 129 to 241. Following this increase, the
activation barrier changes only by 0.2kcal mol−1 but the reaction energy changes by
2.3kcal mol−1. In contrast to QM/MM calculations, within EFMO simulations the
atoms outside the active region remain frozen. The electrons of the fixed fragments
are kept in place by using frozen orbitals across any bonds to the active region. The
system in Ref. [59] was prepared using the approach outlined in Ref. [8], optimising
the geometry of the transition state analog previously used inRef. [4] to crystallise the
enzyme, generating an initial conformation for the reactant state. However, Ref. [8]
uses a fully flexible model for both the substrate and the enzyme allowing the entire
protein to adjust, contrary to Ref. [59] where active fragments have been pre-chosen.

Whilst the authors of Ref. [59] claim their work can be better considered an
approximation to a full-QM calculation, the work detailed in this chapter uses the
linear-scaling DFT code onetep to perform completely quantum mechanical calcu-
lations on a CM fragment. It is through the use of onetep in the work in this chapter
that I hope to avoid the inherent errors that can be encountered using hybrid meth-
ods discussed in this dissertation. By applying onetep, the entire enzyme fragment
chosen can be treated at the same quantummechanical level of theory. The investiga-
tion presented in this chapter takes CM reaction pathways that have been previously
optimised at the B3LYP/6-31G(d)/charmm27 level in Ref. [8]. From these path-
ways, protein fragments ranging up to 1999 atoms have been extracted. Each protein
fragment has a well-defined optimisation region, centred on the substrate, which
is structurally optimised in onetep whilst the remainder of the fragment is kept
fixed. Reaction energies are calculated as the total energy difference between the
optimised reactant state and product state configurations, following geometry opti-
misation. Activation energies are calculated as the total energy difference between
the optimised reactant state and transition state conformations, following transition

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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state searching in the LST/QST formalism, using the optimised reactant and product
state structures as end-point conformations. Following an exhaustive literature search
I am confident that the work in the present chapter is the only reported study tak-
ing optimum CM structures from a QM/MM level of theory and re-optimising with
full-DFT, thus requiring no further input from classical approximations to generate
a QM-only transition state conformation and associated activation barrier.

The next section outlines the preparation process applied to the systems consid-
ered, along with their associated optimisation procedures. The results are presented
through Sects. 6.3–6.7. Further synoptic analysis and a discussion of the results is
presented in Sect. 6.8 and the chapter is brought to a close in Sect. 6.9.

6.2 General Preparation and Optimisation of Systems

In this chapter, CM structures in their reactant and product state configurations have
been extracted fromQM/MMpathwaysoptimised inRef. [8]. Theseminimumenergy
stationary point conformations have then been re-optimised using density-functional
theory in onetep. To briefly outline the protocol used to generate the QM/MM
pathways presented in Ref. [8], Claeyssens and co-workers took the CM structure
reported in Ref. [6] with Protein Data Bank ID 2CHT, which, in its crystal structure,
has a transition state analogue bound to the enzyme active site [4]. The chorismate
substrate was then optimised separately in the gas phase at the RHF/6-31G(d) level.
This molecule was then used to replace the transition state analogue bound to the
active site [55, 56]. Multiple structures were then generated through semi-empirical
QM/MMmolecular dynamics at the SCCDFTB/charmm22 level. Thiswas achieved
by constraining the substrate to be close to the transition state, as defined by a reaction
coordinate described by the difference in C–O bond breaking and C–C bond forming
distance. The substrate was treated with B3LYP/6-31G(d) and the surroundings for
both environmentswere treatedwith thecharmm27 and tip3p force fields. Following
initial equilibration purely based on molecular dynamics, reaction pathways were
generated via restrained optimisation for fixed reaction coordinate moving from the
transition state forward in the reaction coordinate to the product state conformation
and backward to the reactant state configuration. This process yielded 28 snapshots
for each enzyme pathway and 30 snapshots for each pathway in water. In total, 16
pathways were generated in enzyme by this process and 24 in water. It is clear from
the literature that molecular dynamics has been shown to be a very useful tool for
providing initial structures for the study of enzymatic reactions [33, 34, 40], so the
initial CM structures should be reliable. A much more detailed description of the
preparation of the system and the protocol followed for the QM/MM simulations is
available elsewhere [9, 53, 55, 56].



118 6 A Density-Functional Perspective on the Chorismate Mutase Enzyme

6.2.1 Specific Preparation of the Enzyme System

An initial spherical cluster, that was centred on the substrate, was extracted from one
of the QM/MM pathways, detailed in Ref. [8], in the reactant state configuration.
This extract of the total system contained the substrate, the 57 nearest residues to the
substrate and the 41 closest water molecules to the substrate. In total the structure
contained 999 atoms and any terminated peptide bonds were protonated accord-
ingly, using the Open Babel software package [50]. Within this protein fragment,
an optimisation region was defined to comprise the substrate, the four nearest water
molecules and three nearest active-site residues, namely Arg7, Glu78, and Arg90,
which are illustrated in Fig. 6.1. All other residues and water molecules were defined
to comprise the outer, or fixed, region. From the same pathway, all of the same
residues and water molecules were extracted in their product state conformation.
The residues from the product outer region were then replaced by the residues from
the reactant outer region. The individual reactant and product optimisation regions
were then structurally optimised whilst the outer region remained fixed. This type of
optimisation scheme ensures that the calculated total energy differences are directly
attributable to any local changes in the active site whilst accounting for the long-
ranged polarisation and steric constraints of the surrounding protein scaffold of the
enzyme. This model assumes that there are no significant changes in the structure
of the outer region when moving from the reactant to product conformation of the
enzyme. These assumptions agree with the experimental observation that there are
no large-scale changes in the enzyme conformation during the course of the reac-
tion [6, 7, 19]. These assumptions are also consistent with the QM/MM approach
used in Ref. [8] whereby the outer 5 Å of the outer structure is frozen with all other
atoms free to move. As a result there are no significant structural changes in the
outer region of the system when comparing the reactant and product state enzyme
conformations along the pathways fromQM/MM. Transition state searching has also
been performed using the onetep-optimised reactant and product state structures as
end point conformations. At this point it must be emphasised that no information
regarding the transition state structure was taken from the QM/MM calculations.

The aim of Chap.4 of this dissertation was to demonstrate that validation is an
important aspect of any computational investigation. It is of vital importance to
ensure that energies of reaction and activation are converged with respect to the
size of the atomic region undergoing structural optimisation. Therefore for the 57-
residue system, the optimisation region was also increased to include the substrate,
the four closest water molecules and the nine nearest active-site residues, namely
Arg7, Phe57, Ala59, Arg63, Cys75, Glu78, Arg90, Tyr108 and Arg116, which are
illustrated in Fig. 6.1. A larger structure in the same conformation, from the same
pathway, was also extracted. This structure in total comprises the substrate, the 99
nearest residues and the 129 nearest water molecules to the substrate. This fragment
contains 1999 atoms and can be seen in Fig. 6.2. The same three-residue optimisation
region as is contained within the 57-residue system was allowed to optimise for the
99-residue fragment.

http://dx.doi.org/10.1007/978-3-319-19351-9_4
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Fig. 6.2 Exemplar 1999-atomCM fragment. The substrate, nine active-site residues and four water
molecules are shown in colour and the remainder of the residues and water molecules are shown
in grey

The work carried out in Ref. [57] reports vanishing HOMO-LUMO gaps for sys-
tems such as proteins and even water clusters, leading to poor convergence of the
self-consistent electronic structure optimisation procedures. This resultant occupa-
tion of the lowest unoccupied molecular orbitals is unphysical as proteins should
generally display insulating behaviour with large HOMO-LUMO gaps. However,
in Chap.5, it was shown that vanishing HOMO-LUMO gaps are the result of large
surface dipoles being created across an extracted water or protein cluster surrounded
by vacuum. In addition, the work presented within that chapter demonstrated practi-
cal solutions for reducing the dipole moment, recovering the HOMO-LUMO gap in
these systems through means of classical minimisation, implicit solvation and/or the
use of embedded classical point charges. Chapter 5 also showed that classical min-
imisation performed in solution prior to electronic structure calculations will allow

http://dx.doi.org/10.1007/978-3-319-19351-9_5
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the system to retain any major structural features obtained during a fully solvated
molecular dynamics simulation and reduce any electrostatic artefacts that may arise
fromperforming the subsequent electronic structure calculations in vacuo. Following
on from the work in Chap.5, that showed mutating charged residues—on the surface
of the extracted protein, to alanine, helped to significantly increase the calculated gap
of the 1FDF protein, potentially dangling charged residues on the outer shell of the
CM structure were identified as leading to a vanishing HOMO-LUMOgap if not cor-
rectly treated. Ordinarily, these residues would form salt bridges or would be solvent-
exposed in their real environment but in the model presented here, they are vacuum-
exposed. The specific residues, within this category in the present studies, wereHis58
and Glu19 in the 57-residue fragment and Lys24, Lys185, Arg203 and Glu208 in the
99-residue fragment. The best course of action was therefore to mutate the Glu19
to Ala and de-protonate the His58 in the 57-residue fragment. Similarly, with the
99-residue fragment the four vacuum-exposed charged residues were mutated to ala-
nine and the dangling histidine residue was de-protonated, thereby neutralising all
vacuum-exposed charged residues. The overall effect of these changes was to reduce
the number of protein states close to the Fermi level, ultimately improving the conver-
gence of the electronic structure optimisation procedures, and ensuring a significant
HOMO-LUMO gap was maintained for the system. Following these mutations, the
resulting improvements seen in the occupation eigenvalues surrounding the Fermi
Energy are in agreement with the findings of other authors who implemented similar
approaches [14].

First turning attention to the 57-residue system, five initial configurations were
taken from the optimised pathways calculated in Ref. [8]. Starting the optimisation
procedure from a range of QM/MM reactant and product state configurations ensures
that the DFT-optimised structures give a representative sample of the reactive con-
formations, and their associated enthalpies of activation and reaction, found in the
enzyme system at room temperature. Therefore, building on the robust approach pre-
sented in Ref. [8] where multiple pathways have been investigated for the reaction
in the CM enzyme, the average reaction and activation energy will need to be cal-
culated in order to take into consideration local minima present along the pathway.
Once optimised structures for the reactant and product state conformations were
generated and their associated reaction energies and forces were shown to converge,
those structures were then used as the starting point for transition state searching
performed using the linear and quadratic synchronous transit approaches described
in Chap.3. The energies calculated in this investigation do not include entropy, but
as the experimental values available include enthalpies of activation and reaction,
combined with the fact that entropic effects in the enzyme are relatively small and
are not considered to be significant [35], this is a valid comparison to make. Within
the onetep calculations presented in this chapter, the PBE functional, including dis-
persion corrections, is used to describe the entire system at the full-DFT level. With
regards to the specific parameters used for the simulations performed in onetep, the
NGWFs have an equivalent plane wave energy cutoff of 1020eV, corresponding to
a psinc grid spacing of 0.45 a0. An increase in NGWF radii from 5.3 to 6.4 Å led
to a change in reaction energy of 0.3kcal mol−1 for the chorismate to prephenate
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reaction in the largest protein system discussed here. Repeating the calculation with
an energy cut-off of 1290eV changed the reaction energy by 0.1kcal mol−1.

QM/MM calculations on the optimised enzyme pathways detailed in Ref. [8]
have been repeated, in order to compare the results from the large-scale density-
functional calculations, performed in this chapter, directly with QM/MM. These
new QM/MM calculations make use of the PBE density functional with empirical
dispersion corrections based on the formulation by Grimme et al. [24] to describe the
QM region. In comparison, Ref. [8]made use of theB3LYPdensity functional, which
was not dispersion corrected, in order to calculate the QM parts of the calculation. It
has been shown that the inclusion of dispersion within QM/MM calculations has a
significant effect on B3LYP-calculated energies and geometries of transition states
and encounter complexes, in the case of cytochrome P450, and is also argued to be
important in modelling reactions catalysed by other enzymes [42, 43]. The 6-31G(d)
basis set used for the new set of QM/MM calculations is the same, along with the
associated calculation protocol, as implemented within Ref. [8]. In comparison to
these newQM/MM calculations, the difference with the full-DFT calculations lies in
the basis set used. Therefore it may be instructive, at this point, to compare these basis
sets more closely. The so-called 6-31G basis is a split-valence double-zeta basis set;
the core orbital is a contracted Gaussian-type orbital made of 6 Gaussians, and the
valence is described by two orbitals—one contracted Gaussian-type orbital made of
3 Gaussians, and one single Gaussian. 6-31G(d) is then a 6-31G basis set with added
d polarisation functions on non-hydrogen atoms. Previous work in the CM literature
[10], has shown that, for the reaction, the computed LCCSD(T0) barrier heights
agree with the full CCSD(T) values at the basis-set limit to within 1kcal mol−1.
Here, the acronyms refer to coupled-cluster (CC) theory with single (S) and double
(D) excitations combined with an (approximate (T0)) triples (T) correction and local
approximations (L). However, these calculations are prohibitively expensive and are
not routinely used. For reasons of computational convenience, the 6-31G(d) basis
set is used. With regards to basis set used in the current study, the psinc basis, that
used within onetep, is a systematic basis set, the accuracy of which may be tuned
with a single adjustable parameter. In addition, the activation and reaction energies
for the system have been converged with respect to the spacing of the psinc grid.
The onetep calculations describe the entire enzyme fragment at the full-DFT level.
As a result, this yields a more accurate description of the surrounding active site and
associated protein scaffold compared to the force field description in the QM/MM
calculations presented here.

6.2.2 Specific Preparation of System in Solution

In a manner identical to that of the enzyme system preparation, an initial structure,
centred on the substrate,was extracted fromone of theQM/MMpathways in solution,
in the reactant state configuration. The solution system comprises a total of 2025
atoms divided into three regions and a schematic representation of this can be seen
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in Fig. 6.3. Within this total structure, the chorismate substrate and the 76 closest
water molecules were chosen as the region that undergoes structural optimisation.
The optimisation region is then surrounded by 199 water molecules that are fixed
in their positions from QM/MM calculations but are now treated with QM. The
remaining 392 water molecules are represented as classical tip3p electrostatic point
charges fixed in their positions from QM/MM calculations. This use of classical
point charges aids in convergence of the onetep density kernel and is necessary to
restore the HOMO-LUMO gap, as shown in Chap. 5. The chorismate substrate and
the subsequent 76 closest water molecules from the same pathway in the product
state configuration were also extracted and then surrounded by the RS fixed atoms
and electrostatically embedded point charges. Adopting the principles outlined in
Chap.4, two additional systemswere prepared to check the convergence of calculated
properties. The first additional structure defines the substrate and the closest 123
water molecules to be those undergoing structural optimisation. 248 water molecules
then surround this region, fixed in their QM/MM positions and treated with QM.

Fig. 6.3 Schematic representation of the three-region optimisation model for the water systems
considered

http://dx.doi.org/10.1007/978-3-319-19351-9_5
http://dx.doi.org/10.1007/978-3-319-19351-9_4
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The remaining 296 water molecules are treated as embedded classical point charges.
The second additional structure defines the optimisation region as the substrate and
the closest 170 water molecules. Surrounding this region are 303 water molecules
fixed in QM/MM positions that are treated with QM. The 194 water molecules
that remain are treated as tip3p point charges. A total system size of 2025 atoms was
maintained for each of the water spheres extracted in each of the three-region models
used. Further QM/MM calculations were also performed on the water pathways
calculated in Ref. [8]. These calculations again use the PBE functional with empirical
dispersion corrections based on the Grimme formulation.

6.3 Rearrangement in Enzyme

By treating the entirety of the protein fragment at the full-DFT level within onetep,
the DFT-optimised structures and total energies of the reactant and product state of
the 999-atom system can be computed. The resulting optimised reactant and product
structures can be seen in Fig. 6.1. In addition, the figure also shows the transition state
conformation solved using first-principles transition state searching. These resultant
structures are in excellent agreement with the corresponding conformation from the
QM/MM-calculated pathways in Ref. [8], which are not shown here. The 999-atom
protein fragment with an associated 98-atom optimisation region yields energies
of activation and reaction of 13.4 and −7.7 kcal mol−1, respectively. These can
be seen in Table6.1. The table also shows that the activation and reaction energies
for the 999-atom system change by 0.1 and 0.3kcal mol−1, respectively, when the
number of atoms in the optimisation region is increased from 98 to 211 atoms, thus
increasing the total number of that are structurally optimised from three to nine. The
resultant change of activation and reaction energies, after increasing the total size of
the fragment from 999 to 1999 atoms whilst maintaining an optimisation region of
98 atoms, amount to 0.1 and 0.2kcal mol−1, respectively.

As discussed in Chap. 5, performing large-scale density-functional calculations
with a cluster geometry in vacuo can, in some instances, lead to a large surface
dipole moment. If incorrectly treated, this may then lead to poor convergence of the
density kernel occupancies andmay potentially have an effect on the energetics of the

Table 6.1 Energies of activation (�‡Etot) and reaction (�Etot) for increasing size of optimisation
region and total fragment

# Mobile: Frozen atoms Energies/kcal mol−1

�‡Etot �Etot

98 : 901 13.4 –7.7

211 : 788 13.5 –8.0

98 : 1901 13.3 –7.9

98 : 901 (implicit solvation) 13.6 –8.2

http://dx.doi.org/10.1007/978-3-319-19351-9_5
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substrate in the centre of the extracted cluster. In order to test that this effect has been
minimised here, additional implicit solvent calculations have been performed on the
three optimised stationary point structures along the reaction pathway for the 999-
atom system. The same implicit solvation approach has been used as in the previous
chapter to screen any surface dipole moment and increase the HOMO-LUMO gap in
problem cases of water clusters and protein fragments. Following this approach, the
HOMO-LUMO gaps of the DFT-optimised protein clusters are always greater than
0.6eV and increase by 0.3eV upon including implicit solvent. Table6.1 also reveals
that through the use of implicit solvation on the optimised structures, the energies
of activation and reaction are changed by just 0.2 and 0.5kcal mol−1, respectively.
One should therefore be convinced that the calculated properties of interest are well
and truly converged for the smallest cluster studied, comprising 999 atoms, with
an associated optimisation region of 98 atoms. It should hopefully also be evident
that the use of an implicit solvent model to additionally include the effects of the
environment is not necessary for the systems in the present chapter.

In order to compute an average for the calculated energies of activation and
reaction for the chorismate to prephenate rearrangement in CM, five pathways
were selected from Ref. [8]. For each pathway, the structures of the end points
were extracted, truncated to form the 999-atom cluster described previously and re-
optimised using large-scale density-functional approaches with an associated opti-
misation region comprising 98 atoms. Table6.2 compares the averaged values calcu-
lated using onetep with averages from QM/MM calculations and also experimental
enthalpies of activation and reaction. The averaged energies of activation and reac-
tion, calculated using onetep, are equal to 13.6 ± 1.3 and −7.8 ± 0.5 kcal mol−1,
respectively. Here the results are presented in the form of μ ± σ√

n
, where μ is the

sample mean, σ√
n
is the standard error of the mean, σ is the sample standard devia-

tion and n is the sample size. Table6.2 also shows that the calculated value for the
activation energy of 13.6 ± 1.3 kcal mol−1 is in excellent agreement with both the
experimental value of 12.7±0.4 kcalmol−1 and the B3LYP/charmm27 calculations
conducted by other authors. However, when comparing the averaged reaction energy,
calculated with onetep, to that of QM/MM calculations in Ref. [8], it is evident that
the averaged full-DFT values predict a significantly less exothermic reaction for the
chorismate to prephenate rearrangement in the presence of CM. However, following
an exhaustive literature search, no experimental information regarding this reaction
energy in the presence of CM could be found.

In order to further elucidate the effect on the calculated energies of treat-
ing an entire enzyme fragment with QM, additional QM/MM calculations using
PBE+D/charmm27 have been performed. As a result, the exchange-correlation
functional used to describe the QM region is directly comparable with that used
in onetep. However, it is important to note that the 6-31G(d) basis set used in the
QM/MM calculations is less accurate than the onetep psinc basis approach, which
has been shown to approach the complete basis set limit [48]. Table6.2 reveals that the
calculated activation energy is significantly underestimated by PBE+D/charmm27,
which can be ascribed directly to inaccuracies in the molecular mechanics force
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Table 6.2 Comparison of energies of activation (�‡Etot) and reaction (�Etot), from the literature,
to those in the present work

Energies/kcal mol−1

�‡Etot �Etot

onetep 13.6 ± 1.3 –7.8 ± 0.5

B3LYP/charmm27 [8] 11.3 ± 1.8 –18.2 ± 1.3

PBE+D/charmm27 7.5 ± 0.4 –19.7 ± 0.5

Experiment [35] 12.7 ± 0.4 –

field and the QM basis set. The underestimation of activation barriers using a
PBE functional within QM/MM calculations has been previously reported in the
literature [16, 54]. The calculated reaction energy in the QM/MM approach is again
significantly more exothermic compared to that predicted by calculations performed
in onetep. It has also been shown in Ref. [16] that the use of a PBE functional
in a QM/MM calculation can overestimate the energy of reaction. However, once
again, the lack of experimental reaction enthalpy data precludes any conclusions
from being drawn from this particular result. The above results should, however,
instil confidence that all other remaining discrepancies between onetep calculations
and experiment or QM/MM are due to the approximations within full-DFT such as
the PBE exchange-correlation functional, the pseudopotential approach and the use
of the underlying psinc basis set.

In order to examine the differences between the full-QM non-bonded interac-
tions and the QM/MM approximations, Table6.3 compares the interaction energies
between active site and substrate for the optimised enzyme systems with results from
the literature and alsowith additional QM/MMsimulations carried out for the present
chapter. Within this chapter the interaction energy is defined as:

Eint = Etot − (Esub + Eenv) (6.1)

where Eint is calculated as the total energy of the whole system Etot less the com-
ponents of energy of the substrate Esub and that of the environment Eenv, which is
the reorganisation energy due to the enzyme in the protein environment or due to the
water molecules in the solution environment. The latter two terms are single-point
energies from calculations on sub-systems extracted from the optimised structures.
No further re-optimisation is used to calculate these interaction terms. The inter-
action energy should ideally be stabilising at the transition state due to favourable
Coulombic interactions between the dianionic substrate and the surrounding posi-
tively charged active-site residues.

From Table6.4 it can be seen that all interaction energies, calculated using full-
DFT, are converged to within 0.5kcal mol−1 with respect to the size of the opti-
misation region and the total size of fragment simulated. The calculated interaction
energies from QM/MM approaches at the transition state are an overestimate com-
pared to those calculated using full-DFT within onetep. In QM/MM, the strain
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Table 6.3 Comparison of relative interaction energies in enzyme, from the literature, to those in
the present work

Relative energies/kcal mol−1

�‡Eint �Eint �‡Eenv �Eenv �‡Esub �Esub

onetep –2.1 ± 0.3 12.7 ± 0.9 0.6 ± 0.2 –0.5 ± 0.1 15.1 ± 1.2 –20.0 ± 1.2

B3LYP/charmm27 [8] –7.3 ± 2.0 7.0 ± 2.5 – – – –

PBE+D/charmm27 –8.5 ± 0.8 7.5 ± 0.5 2.8 ± 0.2 –3.8 ± 0.5 13.2 ± 0.3 –23.4 ± 0.3

The energies of interaction are defined relative to the RS, measured at the TS (�‡Eint) and the PS
(�Eint). Also shown are the components from the environment (�(‡) Eenv) and from the substrate
(�(‡) Esub) as defined in Eq. (6.1)

Table 6.4 Convergence of calculated interaction energies with respect to the size of the total
fragment considered and the associated optimisation region

# Mobile: Relative energies/kcal mol−1

Frozen atoms

�‡Eint �Eint �‡Eenv �Eenv �‡Esub �Esub

98 : 901 –2.1 ± 0.3 12.7 ± 0.9 0.6 ± 0.2 –0.5 ± 0.1 15.1 ± 1.2 –20.0 ± 1.2

211 : 788 –1.8 13.0 0.7 –0.7 14.6 –20.3

98 : 1901 –2.2 12.9 0.4 –0.5 15.1 –20.3

energy in the enzyme is calculated using an entirely classical approach and, as such,
is expected to be strongly dependent on the accuracy of the force field being used.
This can be understood from the present simulations, as the charmm27 force field
also overestimates the changes in the enzyme strain energy, at both the transition and
product states, when compared to a full-DFT approach. Table6.3 shows that the cost
in reorganisation energy for the enzyme to pass from the chorismate reactant to the
transition state structure is 0.6kcal mol−1 on average, which is around 30% of the
gain in substrate-enzyme interaction energy. It is of note that the strain energy stored
in the enzyme is less than 1kcal mol−1 over the entire course of the reaction, which
may be a favourable design feature in these astonishing natural catalysts. Table6.3
shows that the �‡Esub energy calculated with onetep and PBE+D/charmm27 are
both significantly smaller than the activation energy calculated in vacuo of 29.7 kcal
mol−1.

6.4 Natural Bond Orbital Analysis

As discussed in Chap. 3, although density-functional calculations can provide a very
accurate description of a system in terms of its total electron density, problems can
often arise when trying to decompose intermolecular interactions into chemically
intuitive local quantities in order to generate a more qualitative description of the
electronic behaviour. In the particular case of CM catalysis, it is the contributions
of individual active-site residues to transition state stabilisation that are of interest.

http://dx.doi.org/10.1007/978-3-319-19351-9_3
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For this reason, a natural bond orbital (NBO) analysis has been performed on a
subsystem comprising the substrate and surrounding in the optimisation region. Such
an analysis allows the electron density to be re-described in terms of localised Lewis-
type bonds and anti-bonds, along with lone pair orbitals. It is the delocalisation of
electronic density from filled to vacant NBOs that causes a variational lowering of
the total energy. This phenomenon is particularly important for hydrogen bonds.
However, whilst it is important to keep in mind that no quantitative conclusions
can realistically be drawn from just the charge transfer component, this has been
shown previously to be strongly correlatedwith hydrogen-bonding strength in simple
systems [3, 44, 47]. The three sets of NBOs that are estimated, via second order
perturbation theory, to provide the strongest stabilisation energy to the substrate at
the transition state are shown in Fig. 6.4. As is expected for these types of interactions,
each of them involves the delocalisation of electronic density between the substrate
and neighbouring charged active-site residues. Specifically, they are all interactions
from lone pairs (n) to anti-bonding (σ ∗) orbitals.

With regards to the details of the interactions, the analysis of the substrate
nO → σ ∗

NH interaction with the Arg90 charged residue reveals a favourable change
in second-order perturbation energy in going from the reactant to transition state
conformation ��‡E (2) of −11.4 ± 3.1 kcal mol−1. The same interaction shows
an unfavourable change in going from the reactant to product state conformation
��E (2) of 7.2 ± 2.9 kcal mol−1. This particular interaction indicates that the
Arg90 charged residue is both helpful in stabilising the transition state and also
in destabilising the product, leading toward the eventual unbinding and dissocia-
tion of the substrate. Focussing attention on the crystallographically observed water

Fig. 6.4 The threemost stabilisingNBO interactions at the transition state. The red/green isosurface
represents positive/negative NBOs on the enzyme and the blue/yellow isosurface represents those
on the substrate
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molecule, there exists an nO → σ ∗
OH interaction between this molecule and the

substrate. This interaction gives ��‡E (2) = −8.6 ± 0.8 kcal mol−1, stabilising
the transition state, whilst a separate observed water molecule is involved in the
same type of interaction giving ��E (2) = 3.4 ± 0.9 kcal mol−1, destabilising
the product. There also exists a substrate nO → σ ∗

NH interaction with the Arg7
charged residue, giving ��‡E (2) = −2.4 ± 0.4, stabilising the transition state
combined with ��E (2) = 1.7 ± 0.3, destabilising the product. The NBO analysis
shows that the charged Glu78 active-site residue stabilises the transition state with
��‡E (2) = −3.1±1.0. Therefore, this analysis suggests that overall the active-site
structure has evolved to an extent that the charged residues are accurately positioned
to provide optimal orbital overlap with the substrate at the transition state, thereby
strengthening the intermolecular interaction, as seen in Table6.3, and ultimately low-
ering the activation energy barrier compared to the equivalent reaction in solution,
which is discussed further in Sect. 6.6.

6.5 Structural Analysis

No information regarding the QM/MM structure of the transition state was used in
the current LST/QST simulations performed with onetep. Despite this, there exists
very little difference between the structures computed using full-DFT when com-
pared with the original QM/MM structures. Indeed, the hydrogen-bonding network
is identical in the two sets of structures, at all three stationary points of the reaction.
There are, however, some more subtle deformations in the three charged arginine
active-site residues that are hydrogen-bonded to the substrate. A structural analysis
has been made of the H–N–H angles for the part of the guanidinium groups of each
charged arginine active-site residue that is hydrogen-bonded with the substrate. The
results of this analysis can be seen in Table6.5. Following the analysis one can assert
that, other than the fact that the H–N–H bond angles are consistently smaller in the
structures calculated with onetep, compared to QM/MM, it is not particularly clear
if the identified NBO interactions are correlated with any change in ionic structure.
Therefore, selected dihedral angles, defined using the atomic positions highlighted
in Fig. 6.5, were also measured for the three arginine residues in the initial QM/MM
structures and following optimisation in onetep. In all three cases it is clear that there
is a significant distortion of the arginine guanidiniumgroup away fromplanarity. This
can be seen in Table6.6. Ab initio simulations of Arg radicals have shown that the
planarity of this guanidinium group can be affected by its charge state [20, 65]. In
addition, it has been shown that the environment of the arginine residue can also affect
its planarity [46]. Whilst the classical force field will indeed allow some flexibility
of the dihedral angle, the particular arginine distortion identified in the onetep-
optimised structures is not accurately treated in conventional QM/MM calculations
as the residue is not contained within the QM region. Many authors have discussed
the importance of the Arg90 residue in stabilising the transition state within the CM



6.5 Structural Analysis 129

Table 6.5 Comparison of selectedH–N–Hbond angles of three arginine residues hydrogen-bonded
with the substrate in the CM active site

Active site H–N–H bond angle χ /◦

residue Reactant Transition state Product

χRS
ONETEP χRS

QM/MM χTS
ONETEP χTS

QM/MM χPS
ONETEP χPS

QM/MM

Arg7 118.9 ± 0.1 121.6 ± 0.1 118.9 ± 0.1 121.5 ± 0.1 118.6 ± 0.1 121.2 ± 0.1

Arg90 118.1 ± 0.1 122.0 ± 0.1 118.0 ± 0.1 122.0 ± 0.2 117.6 ± 0.1 121.6 ± 0.1

Arg63 116.9 118.8 116.9 119.2 116.1 119.4

The QM/MM values are from calculations presented in Ref. [8] and the onetep values are those
calculated following structural optimisation. The Arg7 andArg90 bond angles are averaged over the
five pathways in which the residues were structurally optimised. The Arg63 residue was optimised
in the system comprising 211 mobile atoms over a single selected pathway

active site, yet its inclusion within a larger QM region, than is commonly used to treat
this system, has not been reported. Therefore, the work presented in this chapter is
the first observation of the resultant changes in dihedral angle for the Arg90 residue
following structural optimisation at the full-DFT level.

Fig. 6.5 Atomic positions (connected by a dashed line) used in the definition of the dihedral angles
presented in Table 6.6 for the three arginine residues hydrogen-bonded to the substrate, calculated
before and after structural optimisation. The two carbon atoms highlighted, C2 and C15, display the
most significant charge redistribution during the reaction in enzyme. A hydrogen-bond is formed
betweenH0 ofArg90 andO13 of the substrate. TheH–N–H angles shown in Table6.5 are calculated
with H0 and its neighbouring nitrogen and hydrogen atoms
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Table 6.6 Comparison of selected dihedral angles of three arginine residues hydrogen-bondedwith
the substrate in the CM active site

Active site Dihedral angle φ/◦

residue Reactant Transition state Product

φRS
ONETEP φRS

QM/MM φTS
ONETEP φTS

QM/MM φPS
ONETEP φPS

QM/MM

Arg7 −14.8± 1.7 −7.3 ± 0.6 −13.9± 1.5 −6.7 ± 0.7 −11.7± 1.5 −5.7 ± .6

Arg90 −11.9± 1.2 −3.2 ± 0.7 −13.8± 1.3 −4.0 ± 0.6 −14.4± 1.5 −5.7 ± 0.5

Arg63 −13.7 −1.3 −16.7 −5.1 −18.5 −6.6

The QM/MM values are from calculations presented in Ref. [8] and the onetep values are those
calculated following structural optimisation. The Arg7 and Arg90 dihedral angles are averaged
over the five pathways in which the residues were structurally optimised. The Arg63 residue was
optimised in the system comprising 211 mobile atoms over a single selected pathway

6.6 Rearrangement in Solution

Areviewon catalysis penned byNobel laureateAriehWarshel [51] states that in order
to generate a more quantitative understanding of catalysis one must ask the question
“catalysis relative to what ?” and it is almost immediately apparent how one can go
about answering this. One must investigate the uncatalysed version of the reaction
in water. As outlined in Sect. 6.2.2, the equivalent rearrangement of chorismate to
prephenate in solution has also been investigated. It is shown in Table6.7 that both
the energies of activation and of reaction are converged with respect to the size of
the optimisation region used. However, it should be made clear that a much larger
optimisation region, comprising more than 300 atoms, is required in the liquid phase
compared with the simulation bound to the relatively structured enzyme. The best
course of action, following these convergence tests, is to proceed with investigating
the QM/MM pathways using a 534-atom optimisation region in order to make a
comparison with experiment and additional QM/MM simulations. These findings
are presented in Table6.8.

The averaged activation and reaction energies are equal to 24.1 ± 1.1 and
−9.4±2.2 kcal mol−1, respectively. These values are in agreement with experiment
to within 4kcal mol−1. In a similar manner to the result in the enzyme, the activation
barrier has again been overestimated. The calculated reaction energy in solution is

Table 6.7 Energies of activation (�‡Etot) and reaction (�Etot) for increasing size of optimisation
region, along with number of frozen atoms and electrostatic point charges

Mobile atoms Frozen atoms Point charges Energies/kcal mol−1

�‡Etot �Etot

252 597 1176 29.8 −4.7

393 744 888 23.5 −10.0

534 909 582 23.9 −9.7
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Table 6.8 Comparison of energies of activation (�‡Etot) and reaction (�Etot) in water, from the
literature, to those in the present work

Energies/kcal mol−1

�‡Etot �Etot

onetep 24.1 ± 1.1 −9.4 ± 2.2

B3LYP/charmm27 [8] 17.4 ± 1.9 −16.7 ± 2.2

PBE+D/charmm27 20.8 ± 3.9 −23.4 ± 0.9

Experiment [37] 20.71 ± 0.35 –13.2 ± 0.5

similar to the value in enzyme of –7.8kcal mol−1. However, both of these values are
underestimated with respect to the experimentally observed heat of reaction. It can
be seen in Table6.8 that the magnitude of the error, relative to experimental results,
of the B3LYP/charmm27 calculations (−3.3 kcal mol−1) is similar to the full-DFT
approach in onetep (3.4 kcal mol−1), although B3LYP/MM provides an underesti-
mate and full-QM provides an overestimate. A PBE+D/charmm27 approach yields
a good agreement with the experimentally observed activation energy, which is per-
haps more likely to be a fortuitous result. However, the simulations still have their
flaws as the averaged reaction energy is very much overestimated.

It is prudent to note at this point that the reaction conformation in water found in
this chapter, which is based on the global minimum found in enzyme, is very likely to
be one amongst many local minima present in the system in water. Previous authors
have shown that the global minimum energy structure in the enzyme has a different
conformation to the optimal structure found in solution [15]. It has been proposed
that an associated free energy difference, estimated in Ref. [15] as 1.2kcal mol−1,
is likely to contribute to the overall barrier to the non-enzymatic reaction in aqueous
solution. Another exhaustive literature search could not find an associated correction
to the enthalpy barrier but this fact is unlikely to significantly affect the conclusions
drawn from the present calculations.

In an identical manner to the enzyme system, the total energies calculated for the
water system have additionally been decomposed into interaction energy between
the substrate and water, internal energy of the substrate and associated energy of
the water environment. These decomposed energies can be seen in Table6.9. The
convergence of these component energies with respect to system size can be seen
in Table6.10. It can be seen that, again, the energy components are converged to
within 0.5kcal mol−1 with respect to the size of the optimisation region used in the
simulation. As is expected for the water environment, which is less rigid than the
protein system, the standard errors for the individual components of the energy are
much larger than those found in enzyme. It can now be seen that the discrepancy
in calculated reaction energies between the full-DFT and QM/MM approaches, that
both implement the PBE functional, is in fact dominated by the interaction energy
between the substrate and the surrounding environment. This result could well be
due to the electron leakage effect. Such an effect has been reported by other authors
where the electron density is over-polarised by point charges [17, 38, 49]. There may
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Table 6.9 Comparison of interaction energies in solution, from PBE/MM, to those in the present
work

Relative energies/kcal mol−1

�‡Eint �Eint �‡Eenv �Eenv �‡Esub �Esub

onetep –1.2 ± 1.2 14.0 ± 1.5 6.8 ± 0.7 –1.2 ± 0.5 18.5 ± 0.8 –22.2 ± 1.6

PBE+D/charmm27 –7.0 ± 2.4 –1.6 ± 3.2 4.9 ± 2.3 –6.5 ± 1.3 22.9 ± 3.5 –15.3 ± 1.6

The interaction energies are split into components relative to the transition state (�‡Eint) and relative
to the product state (�Eint) and comprise the components from the water environment (�(‡) Eenv)
and from the substrate (�(‡) Esub)

Table 6.10 Convergence of energy components with regard to the size of the optimisation region
used

Mobile atoms Relative energies/kcal mol−1

�‡Eint �Eint �‡Eenv �Eenv �‡Esub �Esub

252 –0.8 17.8 12.1 –0.8 18.5 –21.7

393 –1.6 14.5 6.5 –1.9 18.6 –22.6

534 –1.1 14.1 6.7 –1.4 18.4 –22.1

also be charge transfer between the substrate and the surrounding water that can not
be incorporated within existing classical force field approaches; this hypothesis is
investigated in the following section.

6.7 DDEC and NPA Charge Analysis

The overall charge distributions of the enzyme-substrate complex and the solvated
substrate have been investigated using both natural population and DDEC atoms-
in-molecule analysis. The total charge on the substrate in the three stationary point
conformations during the reaction, along with the associated charge redistribution,
are given in Table6.11. The results from both types of charge analysis show that the
net charge on the substrate is, on average, 0.63 e and 0.79 e, lower in magnitude
than the formal charge of −2 e assigned to the molecule, for the NPA and DDEC
approaches, respectively. This is an indicator of significant charge transfer to the
surroundings. This is likely to have implications for the contributions of the inter-
nal and the interaction energies to the relative interaction and activation energies,
as demonstrated in Table6.3. Although Table6.11 shows the NPA charge analysis
approach yields a slightly more negative total charge for the substrate, the redistribu-
tion of charge across the reaction is in fact very similar for both analyses, showing a
consistent increase in negative charge on the substrate over the course of the reaction.
Whilst one should be cautious to jump to conclusions based on the 0.013 e to 0.025 e
net charge redistributions over the entirety of the substrate shown in Table6.11, it is
more instructive to look at the local atom-specific charge redistributions. Upon doing
so, one can see that the most significant charge redistribution during the course of
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Table 6.11 Charge redistribution (�(‡)qsub) and total charge on the substrate (qsub) in enzyme

Method Charge redistribution/e Total charge on substrate/e

�‡qsub �qsub qRS
sub qTS

sub qPS
sub

NPA −0.014± 0.003 −0.025± 0.009 −1.36 ± 0.02 −1.37 ± 0.02 −1.39 ± 0.01

DDEC −0.013± 0.005 −0.028± 0.008 −1.19 ± 0.01 −1.21 ± 0.01 −1.22 ± 0.01

the reaction in the enzyme is found to be located on the C2 and C15 carbon atoms
on the substrate, following the labelling convention in Ref. [8] and that shown in
Fig. 6.5. The associated change in charge for C2 is −0.24 ± 0.003 e. The change in
charge for C15 is equal to 0.27±0.012 e.Both of these results agree with the natural
population analysis previously performed in Ref. [8]. The charge values from those
analyses are corroborated by DDEC charges which reveal a similar change in charge
over the course of the reaction of −0.29 ± 0.013 e for C2 and 0.28 ± 0.011 e for
C15.

The analyses have also indicated that there is a redistribution of charge on the
Arg90 active-site residue. There is a hydrogen-bond between the H0 and O13 atoms
highlighted in Fig. 6.5. The result of this is a charge redistribution on H0, relative to
the reactant, equal to 0.02± 0.001 e at the transition state and 0.03± 0.001 e at the
product. Whilst these values are an order of magnitude less than the observed charge
redistributions for the C2 and C15 atoms on the substrate, following the charge
analysis of surrounding active site and protein scaffold, the charge redistribution
localised to the Arg90 hydrogen bond is an order of magnitude larger than any other
redistribution over the course of the reaction. This result indicates that the enzyme
is relatively unaffected by the reaction of the substrate. The net charge, derived from
natural population analysis, for the substrate in water is shown in Table 6.12. The
table reveals that the charge on the substrate is less negative than the equivalent
charge in enzyme, thereby again indicating significant charge redistribution. For the
substrate in solution, the net charge again becomes more negative during the course
of the reaction, as was seen to occur in the equivalent enzyme reaction. The partial
charges, for both the NPA and DDEC schemes, are converged to within 0.01 e with
respect to the size of the optimisation region used, as can be seen in Table6.13. Once
again it is the C2 and C15 carbon atoms on the substrate that are found to have
the most significant charge redistribution during the reaction, matching the prior
natural population analysis from Ref. [8]. In short, overall the enzyme is relatively
unaffected by the substrate reaction, as the charge changes are small. However, the

Table 6.12 Charge redistribution (�(‡)qsub) and total charge on the substrate (qsub) in water

Method Charge redistribution/e Total charge on substrate/e

�‡qsub �qsub qRS
sub qTS

sub qPS
sub

NPA −0.022± 0.013 −0.058± 0.024 −1.16 ± 0.014 −1.18 ± 0.013 −1.22 ± 0.014

DDEC −0.018± 0.026 −0.040± 0.023 −1.13 ± 0.014 −1.14 ± 0.006 −1.17 ± 0.010
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Table 6.13 Convergence of charge redistribution of the substrate in water, with respect to the size
of the optimisation region used

Method Mobile Charge redistribution/e Total charge on substrate/e

atoms �‡qsub �qsub qRS
sub qTS

sub qPS
sub

NPA 252 −0.028 −0.055 −1.10 −1.15 −1.21

393 −0.025 −0.058 −1.18 −1.20 −1.22

534 −0.021 −0.056 −1.18 −1.21 −1.24

DDEC 252 −0.019 −0.041 −1.06 −1.09 −1.11

393 −0.020 −0.036 −1.08 −1.13 −1.15

534 −0.017 −0.045 −1.11 −1.15 −1.16

charge changes are statistically significant (evidenced by the error bars) and the NPA
and DDEC methods agree.

It is important to note at this point that one of the main aims of implementing the
DDEC atoms-in-molecules scheme within onetep, as discussed by its main devel-
opers in Ref. [41], is to ultimately replace the partial charges in standard force field
approximations with those derived from an optimised ground state electron den-
sity. Previous authors have incorporated the DDEC charges, derived from onetep,
of three proteins into a classical force field and run molecular mechanics simula-
tions to compute NMR order parameters and scalar couplings [41]. The bonded and
Lennard-Jones parameters were taken directly from the AMBER ff99SB force field
but the atom-centered point charges were replaced by the DDEC/ONETEP charges.
DDEC AIM charges performed better than mean field force field charges in provid-
ing a suitable electrostatic environment that maintained protein stability throughout a
10 ns trajectory while remaining dynamically consistent with experimental observa-
tions. The study also compared theNMRscalar couplingwhich provides ameasure of
hydrogen bond dynamics within a protein. DDEC/onetep charges performed at least
as well as AMBER charges, illustrating that backbone N–H and C=O bond polarisa-
tion is also suitably described by the DDEC electron density partitioning approach
to charge derivation. The only difference between the simulation protocols was in
the point charges and the improvement in the calculated order parameters was due to
the inclusion of native state polarisation in their calculations. As an exploratory step,
the protein-specific charges derived from the optimised electronic density of the CM
fragments considered in this chapter were incorporated within the charmm27 force
field and QM/MM simulations were run in a PBE+D/charmm27+DDEC approach.
It must be noted that this method still does not reduce error due to electron leakage.
Due to the fact that the protein fragments were extracted from a larger protein cluster
in QM/MM pathways presented in Ref. [8], and in order to reduce the complexity of
incorporating the protein-specific charges—the DDEC partial charges were used for
the inner 1999 atoms of the protein structure and the charmm27 values were used for
the remainder of the enzyme. The resultant energy of activation and of reaction were
3.3 ± 0.2 and –8.3 ± 0.9 kcal mol−1, respectively. Both the energy of reaction and
the activation barrier have been significantly underestimated by this approach. This
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indicates that there exists a fundamental flaw in this particular method of incorporat-
ing the protein-specific charges. In principle, one could combine the DDEC method
of charge derivation with a much more accurate QM method, perhaps toward the
MP2 level, where affordable, to describe the substrate in a QM/MM scheme. One of
the benefits of generating partial charges derived from a single DFT calculation of
an entire biomolecule is that the environmental polarisation is naturally included. By
only calculating the charges for the smaller extract and incorporating this alongside
existing force field partial charges, with no adequate partitioningmethod, the error on
the activation energy is very pronounced. One reason why the approach could have
failed is the possibility that the rest of the force field will need re-parameterising.
Whilst the results of Ref. [41] are one piece of evidence that the DDEC scheme
behaves well with existing force fields, much more work needs to be done to inves-
tigate the scheme, and specifically its use within QM/MM simulations, and these
initial results support this. Whilst the immediate next steps are beyond the scope of
this chapter, investigations such as these should be the focus of future work.

6.8 Discussion

The work presented in this chapter comprises a benchmark study which compares
the results from full-DFT calculations of a large section of the Bacillus subtilis cho-
rismate mutase enzyme with state-of-the-art QM/MM simulations from Ref. [8] and
also with experimental investigations from Refs. [35, 37]. For the total system com-
prising 999 atoms, full-DFT calculations implementing structural optimisation and
LST/QST transition state searching methods, that have been validated against hybrid
eigenvector-following techniques, have yielded an energy of activation of 13.6kcal
mol−1. This result is in very good agreement with both QM/MM investigations and
experimental studies. However, this test of large-scale DFT does not include any
explicit considerations of entropic effects and, as a result, comparisons have been
made only to experimental enthalpies of activation and of reaction. It is important to
note that while it is fortunate that a direct comparisonwith experimental enthalpies of
activation and reaction can be made in the particular case of the CM enzyme, large-
scale DFT calculations may be less applicable to reactions that are expected to be
strongly entropy-dependent. The main focus of this work lies primarily on the reten-
tion of the reactant and product structures in local energy minima nearest to those
which were taken from optimised QM/MM calculations. The activation energy has
been shown to converge upon increasing the number of active-site residues treated in
the optimisation region from 3 to 9. In addition, the activation energy has been shown
to be converged on increasing the total protein fragment size from 999 atoms to 1999
atoms. An implicit solvent model has also been used to demonstrate the robustness
of this calculated energy of activation. As well as being converged with respect to the
size of the optimisation region and the total size of the protein fragment considered,
the activation energy of 13.6kcal mol−1, calculated here, is in good agreement
with QM/MM calculations and with experimental studies. The calculated energy of
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reaction, from the present study, underestimates experimental values from investiga-
tions in water from Ref. [37]. A decomposition of the calculated energies into com-
ponents comprising substrate, interaction and reorganisation has been performed. By
treating all of these components at the same QM level of theory, additional insight
into the mechanism of rate enhancement in CM is provided. This decomposition
reveals that the use of classical force fields within the framework of QM/MM simu-
lations results in an overestimation of the interaction terms between the substrate in
the QM region and the associated active-site residues in the MM region. The method
of embedding the systems in a set of electrostatic point charges has also been used to
investigate the equivalent reaction in a water environment. Embedding tip3p charges
within the full-DFT system comprising 2025 atoms gives a calculated energy of
activation of 24.1kcal mol−1. Upon comparison to experimental work in Ref. [37],
this value has been shown to be an overestimate. The activation energy is, however,
converged with respect to the size of optimisation region considered. An identical
decomposition procedure was followed for the solution system to investigate the
non-bonded interactions between the substrate and surrounding water environment.
A direct comparison of the activation barrier and reaction energy from enzyme with
their corresponding values in solution allows the catalytic rate enhancement in CM
to be studied further. These calculated relative energy changes have been collected
together in Table6.14. Combining Tables6.2 and 6.8, it can be seen that the calcu-
lated energy barrier for the reaction decreases from the uncatalysed value of 24.1
kcal mol−1 in water to the catalysed value of 13.6 kcal mol−1 in the presence of CM.
This reduction of activation energy by 10.5 kcal mol−1 in the enzyme compares
extremely favourably with the reduction in the heat of activation barrier determined
experimentally in Refs. [35, 37]. From the decomposition of the total energies it can
clearly be seen that the most significant component in the reduction of the activation
energy by CM (��‡Etot) arises due to the more favourable reorganisation energy
for the reaction in the enzyme compared to in solution. Comparing Tables6.3 and
6.9 shows that the reorganisation energy value decreases from 6.8 kcal mol−1 in the
water environment to 0.6 kcal mol−1 in the presence of CM, giving a relatively large
and negative value for ��‡Eenv. This observation is consistent with the notion that
the CM active-site residues are favourably orientated to interact strongly with the
substrate in its transition state conformation, thereby not introducing any significant
strain into the structure of the enzyme. In addition, the gas phasewater-optimised sub-
strate has an activation energy of 18.5 kcal mol−1 compared to the enzyme-optimised
barrier of 15.1 kcal mol−1 and the in vacuowater-optimised reaction energy is−22.2
kcal mol−1 compared to the enzyme-optimised reaction energy of−20.0 kcal mol−1.
Therefore, a secondary contributor to the catalytic rate enhancement is the fact that
the change in the internal energy of the substrate is lower in the enzyme than in
solution. This effect is reminiscent of the so-called near-attack conformation theory
of enzyme catalytic rate enhancement [29–31], but it only contributes around 30%
of the total barrier lowering found in this investigation. However, the details of this
debate are outside the scope of the present chapter. It has also been demonstrated
from the in vacuo-optimised conformation that both the enzyme and solution envi-
ronments stabilise the substrate at the transition state in comparison to the gas phase.



6.8 Discussion 137

Table 6.14 Changes in total energies, along with their components (kcal mol−1), in going from a
water to protein environment

��‡Etot ��‡Eint ��‡Eenv ��‡Esub

onetep −10.5 −0.9 −6.2 −3.4

Experiment [35, 37] −8.0 ± 0.4 − − −
��Etot ��Eint ��Eenv ��Esub

onetep 1.6 −1.3 0.7 2.2

Table6.14 also shows the calculated changes to the heat of reaction in going from
a solution to enzyme environment. Although there is no experimental data available
to enable a comparison to be made, it is perhaps not surprising that the reaction
energy is similar in the two environments as, in general, enzymes are able to catalyse
a reaction thereby speeding up their rate, but they do not change the standard free
energy change of the reaction overall [1]. In this case, the interaction and internal
substrate energy differences are of similar magnitude, but opposite in sign.

In addition to the energetics of the reaction, an investigation into the natural bond
orbitals of the system has been described in this chapter. Such an analysis allows one
to break down the contributing factors to catalysis further still, so that the impor-
tance and catalytic significance of individual active-site residues can be discussed.
The particular charged active-site residues that have been shown to be vital in sta-
bilising the transition state at the substrate were Arg7, Glu78 and Arg90. It is these
residues which, combined also with a crystallographically observed water molecule,
are expected to be important in lowering the value of �‡Etot in the enzyme relative
to the equivalent reaction in water. These particular active-site residues have also
been shown to destabilise the substrate in its product state conformation, the result
of which will eventually allow the substrate to dissociate and be released to allow it
to continue along the shikimate catalytic pathway [28]. The most favourable NBO
interaction with the substrate was shown to be with the Arg90 charged active-site
residue. A significant deviation from planarity has been observed in the guanidinium
group of Arg90, which has not previously been observed in QM/MM calculations in
Ref. [8]. In addition, a shortening in length of its hydrogen bond with the substrate,
in comparison to QM/MM calculations from Ref. [8], has been observed. This pre-
diction from full-DFT, of the significant contribution of Arg90 to CM catalysis, is
in qualitative agreement with experiments implementing site-specific mutagenesis
[11] and also matches theoretical predictions of previous authors [26, 45, 55, 56,
60] and proposals devised following experimental investigations [21, 35]. However,
despite the clear presence of a discussion of the catalytic significance of Arg90 in the
literature, the work presented in this chapter is the first report of the link between the
residue’s structure, following structural optimisation, and associated catalytic effect.
This chapter has also shown that the Arg7 charged active-site residue demonstrates
a favourable NBO interaction with the substrate, combined with a shortening of
its hydrogen bond length with the substrate at the transition state. It has also been
observed that, following structural optimisation, Arg7 displays significant changes in
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dihedral angle compared to its value in QM/MM. The last of the charged active-site
residues predicted to have catalytic significance following optimisation using full-
DFT isGlu78. The favourableNBO interaction between this residue and the substrate
at the transition state is in qualitative agreement with experimental investigations
demonstrating the importance of the residue in the CM-catalysed reaction [36].

6.9 Summary

Large-scale density-functional calculations are very much a necessity if a substrate
is covalently bound to an enzyme active site and one wishes to avoid the additional
complexities involved in partitioning individual QM andMM regions through chem-
ical bonds. A recent review on linear-scaling methods in Ref. [5] outlines many areas
where large-scale DFT calculations are expected to play an important role. However,
the review ultimately concludes that the applications of such approaches are still
rather limited. In addition, the outcome of this survey suggested that the accuracy
and efficiency of the techniques involved still require further investigation, and that it
is not obvious as to what quantities can be accurately calculated by large-scale DFT
studies. Nevertheless, treating entire proteins with quantum mechanics is becoming
more widespread [12–14, 61] and will potentially increase not only the accuracy,
but also the range, of problems open to investigation in fields ranging from small
molecule therapeutics to molecular biology, enzymology and biomimetics.

Despite the work of previous authors and the encouraging results from the
exploratory investigation presented in this chapter, it is evident from the investi-
gations of the previous and present chapter that the issues involved in the accurate
treatment of enzyme systems can not be tackled with large-scale QM approaches
alone. Instead, a combined strategy utilising the relative strengths of MM, QM/MM
and large-scale QM methods is required. In the present chapter it has been shown
that, using the capabilities of the onetep code, one can start from QM/MM calcu-
lated reactant and product state structures and accurately predict the correct transition
state in what is a fairly straightforward reaction. However, when water molecules
are involved—as is the case here, a preliminary reaction path is needed such that a
reasonablemapping fromwater positions in the reactant to their positions in the prod-
uct state can be obtained. This can be achieved from less computationally expensive
semi-empirical approaches, on the condition that the reaction path is qualitatively
correct. Whilst care has been taken to ensure that all calculated energies are con-
verged with respect to the total size of the system and the number of atoms under-
going structural optimisation, it is likely that the optimisation region in less rigid
protein structures will need to be extended in order to ensure the convergence of
elastic energy with system size. However, the process of deciphering the allosteric
role of the protein scaffold within enzyme catalysis remains outside of the scope
of the present chapter. In order to improve upon the current description of the QM
optimisation and constrained regions, improved linear-scaling density functionals
that contain a more rigorous treatment of electron exchange and correlation must be
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used. The improvement of such functionals is a current active area of research and
the method developments presented in Ref. [18] are expected to be the foundation of
many key future improvements to the onetep code. Ultimately, such advancements
should enable one to be able to run Hartree-Fock and hybrid-DFT calculations on
systems of the size discussed in the present chapter. In addition to this, large-scale
DFT+U approaches [14, 52] and methods harnessing dynamical mean field theory
[62] ought to be used when treating strongly correlated transition metals within
systems of biological interest such as the active sites of organometallic enzymes.

The present chapter comprises a proof-of-principle demonstration of the power
of linear-scaling density-functional methods applied to large-scale systems of bio-
molecular interest. This work has combined the methodological development that
was presented in Chap.5, and has applied the validation techniques that were dis-
cussed in Chap.4, to a real-world reaction of biomolecular relevance taking place in
water and also catalysed by the CM enzyme. One of the final aims of this dissertation
is to be able to proceed from the work outlined here and to use large-scale DFT cal-
culations to improve the de novo computational design of enzymes and also to allow
a range of biomimetic design principles to be drawn from the biological catalysts that
are seen in nature, in order to utilise their properties in advancing industrial catalytic
processes along with biomedical applications.
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Chapter 7
Concluding Remarks

Have no fear of perfection—you’ll never reach it.
—Salvador Dali (1904–1989)

The proof-of-principle investigations reported in this dissertation have demonstrated
the ability of large-scale density-functional calculations, combined with molecu-
lar mechanics and hybrid quantum/classical approaches, to accurately predict the
electronic structure of enzymes and the energetics of their associated catalysed
reactions. With the advent of new and powerful linear-scaling methods opening up
potential applications in the biosciences, new lessons need to be learned about how
it is best to apply them. In this dissertation, it has been shown how to adequately
prepare systems to enable large-scale electronic optimisation. In addition, it has been
shown that by working in combination with hybrid quantum mechanics/molecular
mechanics methods to perform sampling of the conformational space, reliable and
accurate results can be obtained for systems of biomolecular relevance which both
match well with experiment and also improve upon the description available at other
levels of theory. Therefore the overarching theme of the dissertation is that there is
not necessarily one catchall approach to biomolecular simulation but that in order to
sufficiently sample the conformational space for, and accurately treat the electronic
structure of, a system, a combined strategy of MM, QM/MM and full QM is needed.

7.1 Summary of Dissertation

The first three chapters of this dissertation provided the historical, biological and
computational background and laid out the reasons why there is much to be pursued
in the field of computational enzymology. Chapter 4 demonstrated the ability of these
computational methods to accurately treat small molecules that have biological rele-
vance. Simulating ethene, dialanine and the chorismate to prephenate transformation,
structural optimisation and analysis techniques were tested in onetep and OPTIM
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and compared with experimental observations. Overall, the investigations presented
in the chapter provided the necessary validation of the approaches discussed and
gave confidence that the results generated by them later in the dissertation would
be reliable, particularly that the transition state searching methods can be trusted.
The chapter also detailed the first reported use of the LST/QST algorithm in onetep
and the first time this has been combined with the powerful eigenvector-following
techniques available in the interface with the efficient OPTIM code.

Chapter 5 provided a roadmap of system preparation to enable convergence of
the electronic structure of inhomogeneous systems—a subject that had been caus-
ing increasing debate over the last few years. Recent findings from Ref. [1] that
the calculated HOMO-LUMO gap in water and protein systems does vanish un-
der particular system preparation conditions, were confirmed; this characteristic is
unphysical. However, it was shown that unequilibrated vacuum/protein interfaces
arising from using X-ray crystal structures taken straight from experimental repos-
itories can exhibit strong molecular dipole moments, and that these are ultimately
responsible for this phenomenon. The work in the chapter then demonstrated general
practical solutions for restoring the gap in systems comprising up to 2386 atoms. One
of the approaches involved mutating protein charged surface residues to alanine if
they were identified as potentially causing a closure of the HOMO-LUMO gap. This
opened up the calculated gap, from negligible to 1.3 eV, for the 1FDF protein. Other
solutions to the gap closure problem included classical structural optimisation of the
interfaces between water and vacuum, to the screening of molecular dipole moments
through the implicit solvation of protein structures, combined with the use of embed-
ded classical point charges. The implications for the remainder of the dissertation
were also discussed.

Chapter 6 investigated the enzymatic mechanisms of the Bacillus subtilis choris-
mate mutase enzyme and the chorismate to prephenate rearrangement that it acceler-
ates relative to the equivalent reaction in water. The work in the chapter demonstrated
that by combining the powerful methods available for performing large-scale DFT
with the robust methodologies and best practices developed during this dissertation,
calculated values for energies of activation and reaction could be converged with
respect to the size of the fragment extracted from the full protein. The calculated
activation energy barrier was found to be lowered by 10.5kcal mol−1 in the presence
of the enzyme, compared to the uncatalysed reaction in solution, a result which is
in good agreement with experiment. Furthermore, due to the full-DFT nature of the
simulations, additional information can be obtained from these calculations that is
previously not discussed in QM/MM investigations or studies using methods based
purely on classical approaches such as molecular dynamics. The catalytic rate en-
hancement provided by the enzyme is attributed to strong overlap between orbitals
on the substrate and several charged active-site residues which results in strong inter-
molecular hydrogen bonding at the transition state whilst inducing negligible strain
in the enzyme. One specific example from the work is the observation linking the
structure of the Arg90 residue in the CM active site with its catalytic effect. The
work presented in Chap.6 is the first such investigation to do so, emphasising the
benefits of large-scale QM simulations and demonstrating how they can complement
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additional molecular dynamics and quantum/classical simulations. In addition, this
proof-of-principle demonstration of powerful large-scale DFT methods shows their
relevance in studying systems of genuine biological interest and, I hope, will produce
new insight into enzymatic principles from an atomistic perspective.

One of the key aims of this dissertation has been to establish a computational
methodology, allowing the full quantum-mechanical treatment of systems in enzy-
mology. A suggested three-point plan, encapsulating the procedures developed in
this dissertation is discussed in the following:

1. Initial starting coordinates from experiment (PDB) or theory
One should startwith experimentally resolved coordinates that have been archived
in a repository such as the Brookhaven National Laboratory Protein Data Bank
(PDB) [2]. Ideally, the method of crystallisation should be of a form where the
hydrogen atoms have been explicitly indicated such as in solution NMR, as with
every structure studied in Chap.5 apart from 1UBQ. However it is not feasible
to expect solution NMR structures to be available for enzymes. Typically, this
method of crystallisation is only applicable to relatively small protein structures.
In the case of 1UBQ in Chap.5 the structure was resolved using X-ray diffraction.
In this case, a resolution of 1.8 Å or better should only be accepted, as is the
case with 1UBQ. However, as is often the case, the hydrogen atoms may not be
explicitly indicated and the resolution of the diffraction resolved structure may be
worse than 1.8 Å. In such instances, then software packages, such as Molprobity
[3], should be used to add hydrogens, assign tautomeric states and generally refine
Xray structures or NMR ensembles before simulations should begin.

2. Refine with hybrid quantum mechanics/molecular mechanics (QM/MM)
Minimisation techniques should then be used in order to adequately sample the
configuration space of the system in a computationally less expensive, though less
rigorous, manner, through the use of classical potentials. However, within many
systems in enzymology it is likely that structures will contain some substrate or
transition state analogue, used to crystallise the enzyme, that has not been para-
meterised for the particular classical potential being used. Therefore it may not
always be feasible to perform sampling in a purely classical manner. In addition,
classical potentials can not describe the cleavage and formation of electron bonds.
This is a key feature of many enzyme-catalysed reactions that are important to
study in enzymology. Therefore, onemust use a level ofQM in simulations that al-
low electron bond rearrangement. This can be achieved using the hybrid QM/MM
approach that treats a user-defined region of the system with QM, allowing the
electronic structure of the system to be accurately treated, whilst using a less
rigorous classical potential to describe the protein matrix and surrounding sol-
vent. In addition, techniques that combine classical sampling within a QM/MM
framework, such as those presented in Ref. [4], are then advisable to use. By
doing so, one can then generate different reactant structures, acting as starting
points, that will allow multiple reaction pathways to be constructed. This will
then allow temperature effects to be modelled, in an approximate manner, which
are important to consider. Such conformational sampling is not feasibly done at
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the full-QM level due to the restriction of computational resources. Therefore this
QM/MM stage is very difficult to avoid at the moment.

3. Further refinement with full-quantum mechanics (QM)
It important to ensure that the calculated properties of interest for the system are
converged with respect to the QM region, which is difficult to do within QM/MM
due to the multitude of different approaches for interfacing the QM and MM re-
gions. The investigations discussed in this dissertation instead perform full-QM
calculations on a significant portion of a systemusingDFT. In addition, for protein
systems the accurate treatment of the solvent is crucial. Chapter 5 demonstrated
that structural optimisation of water/vacuum and protein/vacuum interfaces us-
ing classical methods are required to prevent the closure of the HOMO-LUMO
gaps of water clusters and protein molecules. However, one can only ensure these
gap values are accuratelymaintained using full-QMapproaches. Such approaches
used in this dissertation have included the screening of molecular dipole moments
through the use of implicit solvation, surrounding the system with explicit water
layers and embedding the quantummechanical system in the potential of classical
point charges representing the water environment. In the case of significant net
charge (+3e) in a protein, the work in Chap. 5 has shown that an implicit solvent
will be necessary to accurately treat the system. Implicit solvation yields the clos-
est agreement between the HOMO-LUMO gaps of large isolated explicit water
clusters and that of bulk water. The work in Chap.5 also demonstrated that the use
of implicit solvation techniques restores larger HOMO-LUMO gaps for proteins
to a greater extent than when 5 Å of the surrounding water molecules, retained
from bulk periodic simulations, are explicitly simulated. Activation energies are
often calculated in a QM/MM framework by proceeding from reactant to product
by using some simply defined reaction coordinate. However, the work presented
in Chap.6 of this dissertation uses the more rigorous LST/QST algorithm to ac-
curately calculate the full-QM transition state for an enzyme-catalysed reaction,
both in water and in the presence of the enzyme. The DFT-predicted reduction in
activation barrier from water to enzyme, of 10.5kcal mol−1 is in good agreement
with the experimentally observed reduction of 8.0kcal mol−1.

7.2 Suggestions for Further Work

A recurring theme throughout this dissertation is that there is not just one computa-
tionalmethod that can be simply applied to biomolecular systems. Therefore themost
effective way to proceed will be to ensure a robust strategy can be formulated to en-
able accurate and reliable investigations to be performed using multiple approaches,
with each method complementing the others. As mentioned in Chap.6, it has been
shown that replacing standard amber ff99sb atomic partial charges with those calcu-
lated from large-scale DFT simulations incorporating the DDEC approach generates
a force field that is better at replicating protein dynamics. This arises because of the
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error in the original force field description of the protein electrostatic potential. This
is an artefact due mostly to the atomic partial charges for the force field being fitted
to the electrostatic potential of small molecules, neglecting the important long-range
electronic polarisation present in the protein. A future goal, leading out of the work
presented in this dissertation, will be to extend upon the work in Ref. [5] and to
treat CM in a force field where DDEC charges replace the standard atomic partial
charges. Thereby, the active site will be treated with an accurate QM method and a
DDEC-augmented force field will describe the surrounding environment.

Transition metals have a distinct presence at the reactive centres in molecules
active in biological catalytic cycles [6]. Within such systems, mid-row 3d transition
metals facilitate reactions as diverse as methane-to-methanol conversion at an an-
tiferromagnetically coupled dimetal center [7, 8], unactivated alkane halogenation
by a high-energy, high-spin ferryl-oxo center in the SyrB2 halogenase [9], and oxy-
gen binding at iron porphyrins in haemoglobin [10]. Therefore, the development of
techniques that allow one to progress beyond DFT, employing large-scale DFT+U
approaches [11, 12] and methods harnessing dynamical mean field theory [13], are
of particular importance. In addition, a more rigorous treatment of electron exchange
and correlation may improve the agreement between density-functional calculated
activation barriers and experiment. The development of such functionals is a current
topic of research [14] and a first step to test what will be a key future improvement
to the onetep code will be to observe the dependence of calculated HOMO-LUMO
gap on system size for larger proteins and water clusters than the ones studied in
Chap.5.

I strongly believe that one of the Grand Challenge areas in large-scale compu-
tational biology will be to understand how the electronic structure of biomolecu-
lar systems informs their function. Further, as the length scale on which accurate
QM-optimised structures are calculated is increased, the aim will be to decipher
the allosteric role of the protein scaffold within enzyme catalysis using these fast
and accurate computational methods. The investigations carried out in this disserta-
tion provide confidence and proof-of-concept results for studying large, biologically
relevant systems from a DFT-based perspective. The continued understanding of bi-
ological systems at an atomic and electronic level will allow a detailed picture of
the mechanisms of enzyme active sites to be constructed. Such a picture will ul-
timately be of use in biomimetic approaches attempting to solve many important
problems such as hydrogen storage and carbon capture. Exploratory computational
work helping to inform on how to redesign hydrogen-abstracting enzymes toward
alternative products is already underway [15], along with the application of first-
principles catalyst design to carbon capture through biomimetic means [16, 17]. In
addition, experimental investigations have recently shown the existence of an en-
zyme that efficiently hydrogenates carbon dioxide to produce liquid formate that can
be safely transported and used as a high energy-density power source for hydrogen
fuel cell devices [18]. As such, there remains still a lot to learn from biology as to
how one can most efficiently develop catalytic solutions for some of the most chal-
lenging global problems. I feel that biomimetic first-principles based design will be a
significant factor in the success of these solutions. The ability to predict the properties
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and function of an enzyme that has yet to be experimentally characterised and facil-
itating the design of new enzymes, leading to their subsequent synthesis—for both
industrial and biomedical purposes, are significant goals in the field. It is the anticipa-
tion of achieving milestones such as these that shall fuel the continual development
and application of computational techniques to problems in enzymology.
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